skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating Augmented Reality Communication: How Can We Teach Procedural Skill in AR?
Augmented reality (AR) has great potential for use in healthcare applications, especially remote medical training and supervision. In this paper, we analyze the usage of an AR communication system to teach a medical procedure, the placement of a central venous catheter (CVC) under ultrasound guidance. We examine various AR communication and collaboration components, including gestural communication, volumetric information, annotations, augmented objects, and augmented screens. We compare how teaching in AR differs from teaching through videoconferencing-based communication. Our results include a detailed medical training steps analysis in which we compare how verbal and visual communication differs between video and AR training. We identify procedural steps in which medical experts give visual instructions utilizing AR components. We examine the change in AR usage and interaction over time and recognize patterns between users. Moreover, AR design recommendations are given based on post-training interviews.  more » « less
Award ID(s):
2026568
PAR ID:
10535800
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
VRST '23: Proceedings of the 29th ACM Symposium on Virtual Reality Software and Technology
Date Published:
ISBN:
979-8-4007-0328-7
Format(s):
Medium: X
Location:
Christchurch New Zealand
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the design of a mixed reality (MR) telehealth training system that aims to close the gap between in-person and distance training and re-training for medical procedures. Our system uses real-time volumetric capture as a means for communicating and relating spatial information between the non-colocated trainee and instructor. The system's design is based on a requirements elicitation study performed in situ, at a medical school simulation training center. The focus is on the lightweight real-time transmission of volumetric data - meaning the use of consumer hardware, easy and quick deployment, and low-demand computations. We evaluate the MR system design by analyzing the workload for the users during medical training. We compare in-person, video, and MR training workloads. The results indicate that the overall workload for central line placement training with MR does not increase significantly compared to video communication. Our work shows that, when designed strategically together with domain experts, an MR communication system can be used effectively for complex medical procedural training without increasing the overall workload for users significantly. Moreover, MR systems offer new opportunities for teaching due to spatial information, hand tracking, and augmented communication. 
    more » « less
  2. Abstract We present the design of a mixed reality (MR) telehealth training system that aims to close the gap between in-person and distance training and re-training for medical procedures. Our system uses real-time volumetric capture as a means for communicating and relating spatial information between the non-colocated trainee and instructor. The system's design is based on a requirements elicitation study performed in situ, at a medical school simulation training center. The focus is on the lightweight real-time transmission of volumetric data - meaning the use of consumer hardware, easy and quick deployment, and low-demand computations. We evaluate the MR system design by analyzing the workload for the users during medical training. We compare in-person, video, and MR training workloads. The results indicate that the overall workload for central line placement training with MR does not increase significantly compared to video communication. Our work shows that, when designed strategically together with domain experts, an MR communication system can be used effectively for complex medical procedural training without increasing the overall workload for users significantly. Moreover, MR systems offer new opportunities for teaching due to spatial information, hand tracking, and augmented communication. 
    more » « less
  3. ABSTRACT Medical procedures are an essential part of healthcare delivery, and the acquisition of procedural skills is a critical component of medical education. Unfortunately, procedural skill is not evenly distributed among medical providers. Skills may vary within departments or institutions, and across geographic regions, depending on the provider’s training and ongoing experience. We present a mixed reality real-time communication system to increase access to procedural skill training and to improve remote emergency assistance. Our system allows a remote expert to guide a local operator through a medical procedure. RGBD cameras capture a volumetric view of the local scene including the patient, the operator, and the medical equipment. The volumetric capture is augmented onto the remote expert’s view to allow the expert to spatially guide the local operator using visual and verbal instructions. We evaluated our mixed reality communication system in a study in which experts teach the ultrasound-guided placement of a central venous catheter (CVC) to students in a simulation setting. The study compares state-of-theart video communication against our system. The results indicate that our system enhances and offers new possibilities for visual communication compared to video teleconference-based training. 
    more » « less
  4. Augmented Reality (AR) is increasingly used in medical applications for visualizing medical information. In this paper, we present an AR-assisted surgical guidance system that aims to improve the accuracy of catheter placement in ventriculostomy, a common neurosurgical procedure. We build upon previous work on neurosurgical AR, which has focused on enabling the surgeon to visualize a patient’s ventricular anatomy, to additionally integrate surgical tool tracking and contextual guidance. Specifically, using accurate tracking of optical markers via an external multi-camera OptiTrack system, we enable Microsoft HoloLens 2-based visualizations of ventricular anatomy, catheter placement, and the information on how far the catheter tip is from its target. We describe the system we developed, present initial hologram registration results, and comment on the next steps that will prepare our system for clinical evaluations. 
    more » « less
  5. Augmented reality (AR) is a powerful visualization tool to support learning of scientific concepts across learners of various ages. AR can make information otherwise invisible visible in the physical world in real-time. In this study, we are looking at a subset of data from a larger study (N=120), in which participant pairs interacted with an augmented sound producing speaker. We explored the learning behaviors in eight pairs of learners (N=16) who participated in an unstructured physics activity under two conditions: with or without AR. Comparing behaviors between the two experimental conditions, we found that AR affected learning in four different ways: participants in the AR condition (1) learned more about visual concepts (ex: magnetic field structures) but learned less about nonvisual content (ex: relationship between electricity and physical movement); (2) stopped exploring the system faster than NonAR participants; (3) used less aids in exploration and teaching; and (4) spent less time in teaching their collaborators. We discuss implications of those results for designing collaborative learning activities with augmented reality. 
    more » « less