Emerging technologies such as Augmented Reality (AR), have the potential to radically transform education by making challenging concepts visible and accessible to novices. In this project, we have designed a Hololens-based system in which collaborators are exposed to an unstructured learning activity in which they learned about the invisible physics involved in audio speakers. They learned topics ranging from spatial knowledge, such as shape of magnetic fields, to abstract conceptual knowledge, such as relationships between electricity and magnetism. We compared participants' learning, attitudes and collaboration with a tangible interface through multiple experimental conditions containing varying layers of AR information. Wemore »
How Augmented Reality Affects Collaborative Learning of Physics: a Qualitative Analysis
Augmented reality (AR) is a powerful visualization tool to support learning of scientific concepts across learners of various ages. AR can make information otherwise invisible visible in the physical world in real-time. In this study, we are looking at a subset of data from a larger study (N=120), in which participant pairs interacted with an augmented sound producing speaker. We explored the learning behaviors in eight pairs of learners (N=16) who participated in an unstructured physics activity under two conditions: with or without AR. Comparing behaviors between the two experimental conditions, we found that AR affected learning in four different ways: participants in the AR condition (1) learned more about visual concepts (ex: magnetic field structures) but learned less about nonvisual content (ex: relationship between electricity and physical movement); (2) stopped exploring the system faster than NonAR participants; (3) used less aids in exploration and teaching; and (4) spent less time in teaching their collaborators. We discuss implications of those results for designing collaborative learning activities with augmented reality.
- Award ID(s):
- 1748093
- Publication Date:
- NSF-PAR ID:
- 10101504
- Journal Name:
- Computer-supported collaborative learning
- ISSN:
- 1573-4552
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
COVID-19 has altered the landscape of teaching and learning. For those in in-service teacher education, workshops have been suspended causing programs to adapt their professional development to a virtual space to avoid indefinite postponement or cancellation. This paradigm shift in the way we conduct learning experiences creates several logistical and pedagogical challenges but also presents an important opportunity to conduct research about how learning happens in these new environments. This paper describes the approach we took to conduct research in a series of virtual workshops aimed at teaching rural elementary teachers about engineering practices and how to teach a unitmore »
-
Augmented reality (AR) applications are growing in popularity in educational settings. While the effects of AR experiences on learning have been widely studied, there is relatively less research on understanding the impact of AR on the dynamics of co-located collaborative learning, specifically in the context of novices programming robots. Educational robotics are a powerful learning context because they engage students with problem solving, critical thinking, STEM (Science, Technology, Engineering, Mathematics) concepts, and collaboration skills. However, such collaborations can suffer due to students having unequal access to resources or dominant peers. In this research we investigate how augmented reality impacts learningmore »
-
Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school students’ navigation patterns and science learning with a mobile AR technology, developed by the research team, in laboratory settings. The AR technology allows students to conduct hands-on laboratory experiments and interactively explore various science phenomena covering biology, chemistry, and physics concepts. In this study, seventy ninth-grade students carried out science laboratory experimentsmore »
-
Spatial reasoning skills contribute to performance in many STEM fields. For example, drawing sectional views of three-dimensional objects is an essential skill for engineering students. There is considerable variation in the spatial reasoning skills of prospective engineering students, putting some at risk for compromised performance in their classes. This study takes place in a first-year engineering Spatial Visualization course to integrate recent practices in engineering design education with cognitive psychology research on the nature of spatial learning. We employed three main pedagogical strategies in the course - 1) in class instruction on sketching; 2) spatial visualization training; and 3) manipulationmore »