skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constrained drop surfactometry for studying adsorbed pulmonary surfactant at physiologically relevant high concentrations
An in vitro biophysical model, called constrained drop surfactometry, was developed to study the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10–35 mg/mL. These results suggest that the biophysical function of multilayers formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing.  more » « less
Award ID(s):
2011317
PAR ID:
10535856
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physiology Society
Date Published:
Journal Name:
American Journal of Physiology-Lung Cellular and Molecular Physiology
Volume:
325
Issue:
4
ISSN:
1040-0605
Page Range / eLocation ID:
L508 to L517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A thorough investigation into the biophysical properties of four animal-derived clinical surfactant preparations was conducted through constrained drop surfactometry under physiologically relevant conditions. This comparative study unveiled unique in vitro biophysical characteristics among these clinical surfactants, establishing correlations between their chemical composition, lateral film structure, and biophysical functionality. The acquired knowledge offers essential insights for the precise and personalized design of clinical surfactant for the treatment of respiratory distress syndrome and other respiratory conditions. 
    more » « less
  2. With an increasing prevalence of electronic cigarette (e-cigarette) use, especially among youth, there is an urgent need to better understand the biological risks and pathophysiology of health conditions related to e-cigarettes. A majority of e-cigarette aerosols are in the submicron size and would deposit in the alveolar region of the lung, where they must first interact with the endogenous pulmonary surfactant. To date, little is known whether e-cigarette aerosols have an adverse impact on the pulmonary surfactant. We have systematically studied the effect of individual e-cigarette ingredients on an animal-derived clinical surfactant preparation, bovine lipid extract surfactant, using a combination of biophysical and analytical techniques, including in vitro biophysical simulations using constrained drop surfactometry, molecular imaging with atomic force microscopy, chemical assays using carbon nuclear magnetic resonance and circular dichroism, and in silico molecular dynamics simulations. All data collectively suggest that flavorings used in e-cigarettes, especially menthol, play a predominant role in inhibiting the biophysical function of the surfactant. The mechanism of biophysical inhibition appears to involve menthol interactions with both phospholipids and hydrophobic proteins of the natural surfactant. These results provide novel insights into the understanding of the health impact of e-cigarettes and may contribute to better regulation of e-cigarette products. 
    more » « less
  3. In the pursuit of the development of a first-in-kind polymer lung surfactant (PLS) therapeutic whose effects are biophysical in nature, a comprehensive understanding of the factors affecting the air–water surface mechanical behavior of water-spread block copolymer micelles is desired. 
    more » « less
  4. Jeyaseelan, Samithamby (Ed.)
    Introduction E-cigarette (EC) and vaping use continue to remain popular amongst teenage and young adult populations, despite several reports of vaping associated lung injury. One of the first compounds that EC aerosols comes into contact within the lungs during a deep inhalation is pulmonary surfactant. Impairment of surfactant’s critical surface tension reducing activity can contribute to lung dysfunction. Currently, information on how EC aerosols impacts pulmonary surfactant remains limited. We hypothesized that exposure to EC aerosol impairs the surface tension reducing ability of surfactant. Methods Bovine Lipid Extract Surfactant (BLES) was used as a model surfactant in a direct exposure syringe system. BLES (2ml) was placed in a syringe (30ml) attached to an EC. The generated aerosol was drawn into the syringe and then expelled, repeated 30 times. Biophysical analysis after exposure was completed using a constrained drop surfactometer (CDS). Results Minimum surface tensions increased significantly after exposure to the EC aerosol across 20 compression/expansion cycles. Mixing of non-aerosolized e-liquid did not result in significant changes. Variation in device used, addition of nicotine, or temperature of the aerosol had no additional effect. Two e-liquid flavours, menthol and red wedding, had further detrimental effects, resulting in significantly higher surface tension than the vehicle exposed BLES. Menthol exposed BLES has the highest minimum surface tensions across all 20 compression/expansion cycles. Alteration of surfactant properties through interaction with the produced aerosol was observed with a basic e-liquid vehicle, however additional compounds produced by added flavourings appeared to be able to increase inhibition. Conclusion EC aerosols alter surfactant function through increases in minimum surface tension. This impairment may contribute to lung dysfunction and susceptibility to further injury. 
    more » « less
  5. Recognising that surfactants can impede the drag reduction resulting from superhydrophobic surfaces (SHS), we investigate the impact of spatio–temporal fluctuations in surfactant concentration on the drag-reduction properties of SHS. We model the unsteady transport of soluble surfactant in a channel flow bounded by two SHS. The flow is laminar, pressure driven and the SHS are periodic in the streamwise and spanwise directions. We assume that the channel length is much longer than the streamwise period, the streamwise period is much longer than the channel height and spanwise period, and bulk diffusion is sufficiently strong for cross-channel concentration gradients to be small. By combining long-wave and homogenisation theories, we derive an unsteady advection–diffusion equation for surfactant-flux transport over the length of the channel, which is coupled to a quasi-steady advection–diffusion equation for surfactant transport over individual plastrons. As diffusion over the length of the channel is typically small, the surfactant flux is governed by a nonlinear wave equation. In the fundamental case of the transport of a bolus of surfactant, we predict its propagation speed and describe its nonlinear evolution via interaction with the SHS. The propagation speed can fall below the average streamwise velocity as the surfactant adsorbs and rigidifies the plastrons. Smaller concentrations of surfactant are advected faster than larger ones, so that wave-steepening effects can lead to shock formation in the surfactant-flux distribution. Our asymptotic results reveal how unsteady surfactant transport can affect the spatio–temporal evolution of the slip velocity, drag reduction and effective slip length in SHS channels. 
    more » « less