skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative biophysical study of clinical surfactants using constrained drop surfactometry
A thorough investigation into the biophysical properties of four animal-derived clinical surfactant preparations was conducted through constrained drop surfactometry under physiologically relevant conditions. This comparative study unveiled unique in vitro biophysical characteristics among these clinical surfactants, establishing correlations between their chemical composition, lateral film structure, and biophysical functionality. The acquired knowledge offers essential insights for the precise and personalized design of clinical surfactant for the treatment of respiratory distress syndrome and other respiratory conditions.  more » « less
Award ID(s):
2403397 2011317
PAR ID:
10595790
Author(s) / Creator(s):
Publisher / Repository:
American Physiological Society
Date Published:
Journal Name:
American Journal of Physiology-Lung Cellular and Molecular Physiology
Volume:
327
Issue:
4
ISSN:
1040-0605
Page Range / eLocation ID:
L535 to L546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With an increasing prevalence of electronic cigarette (e-cigarette) use, especially among youth, there is an urgent need to better understand the biological risks and pathophysiology of health conditions related to e-cigarettes. A majority of e-cigarette aerosols are in the submicron size and would deposit in the alveolar region of the lung, where they must first interact with the endogenous pulmonary surfactant. To date, little is known whether e-cigarette aerosols have an adverse impact on the pulmonary surfactant. We have systematically studied the effect of individual e-cigarette ingredients on an animal-derived clinical surfactant preparation, bovine lipid extract surfactant, using a combination of biophysical and analytical techniques, including in vitro biophysical simulations using constrained drop surfactometry, molecular imaging with atomic force microscopy, chemical assays using carbon nuclear magnetic resonance and circular dichroism, and in silico molecular dynamics simulations. All data collectively suggest that flavorings used in e-cigarettes, especially menthol, play a predominant role in inhibiting the biophysical function of the surfactant. The mechanism of biophysical inhibition appears to involve menthol interactions with both phospholipids and hydrophobic proteins of the natural surfactant. These results provide novel insights into the understanding of the health impact of e-cigarettes and may contribute to better regulation of e-cigarette products. 
    more » « less
  2. An in vitro biophysical model, called constrained drop surfactometry, was developed to study the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10–35 mg/mL. These results suggest that the biophysical function of multilayers formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing. 
    more » « less
  3. Abstract Neonatal respiratory distress syndrome is mainly treated with the intratracheal delivery of pulmonary surfactants. The success of the therapy depends on the uniformity of distribution and efficiency of delivery of the instilled surfactant solution to the respiratory zone of the lungs. Direct imaging of the surfactant distribution and quantifying the efficiency of delivery is not feasible in neonates. To address this major limitation, we designed an eight-generation computational model of neonate lung airway tree using morphometric and geometric data of human lungs and fabricated it using additive manufacturing. Using this model, we performed systematic studies of delivery of a clinical surfactant either at a single aliquot or at two aliquots under different orientations of the airway tree in the gravitational space to mimic rolling a neonate on their side during the procedure. Our study offers novel insights into effects of the orientation of the lung airways and presence of a pre-existing surfactant film on how the instilled surfactant solution distributes in airways. 
    more » « less
  4. In the pursuit of the development of a first-in-kind polymer lung surfactant (PLS) therapeutic whose effects are biophysical in nature, a comprehensive understanding of the factors affecting the air–water surface mechanical behavior of water-spread block copolymer micelles is desired. 
    more » « less
  5. Neonatal respiratory distress syndrome is a potentially life-threatening condition that is often treated with the delivery of exogenous surfactants through a process called surfactant replacement therapy. This therapy includes the administration of the liquid surfactant through an endotracheal tube and mechanical ventilation. Due to the difficulty of imaging neonate lungs during this therapy, the success of surfactant delivery is often determined by observational techniques and evaluation of blood oxygen levels. The limitation of imaging creates challenges in evaluating the distribution of surfactant in airways. To address this limitation, we designed a computational, eight-generation, asymmetric neonate lung model using morphometric data to mimic the geometric structure of the human airway tree and fabricated it using an additive manufacturing technique. We used our model to study two-aliquot delivery of a clinically rated liquid surfactant under two different orientations to evaluate its distribution in airways. Our study offers a complex lung airway tree design that mimics the native geometry of the human airway tree to enable studies of therapeutics transport in airways. 
    more » « less