skip to main content


Title: The NCAR GPS Dropwindsonde and Its Impact on Hurricane Operations and Research
Abstract

The global positioning system dropwindsonde has provided thousands of high-resolution kinematic and thermodynamic soundings in and around tropical cyclones (TCs) since 1997. These data have revolutionized the understanding of TC structure, improved forecasts, and validated observations from remote sensing platforms. About 400 peer-reviewed studies on TCs using these data have been published to date. This paper reviews the history of dropwindsonde observations, changes to dropwindsonde technology since it was first used in TCs in 1982, and how the data have improved forecasting and changed our understanding of TCs.

 
more » « less
Award ID(s):
2211308 2228299
PAR ID:
10535937
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AMERICAN METEOROLOGICAL SOCIETY
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
104
Issue:
11
ISSN:
0003-0007
Page Range / eLocation ID:
E2134 to E2154
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Atlantic tropical cyclones (TCs) can cause significant societal and economic impacts, as 2019's Dorian serves to remind us of these storms' destructiveness. Decades of effort to understand and predict Atlantic TC activity have improved seasonal forecast skill, but large uncertainties still remain, in part due to an incomplete understanding of the drivers of TC variability. Here we identify an association between the East Asian Subtropical Jet Stream (EASJ) during July–October and the frequency of Atlantic TCs (wind speed ≥34 knot) and hurricanes (wind speed ≥64 knot) during August–November based on observations for 1980–2018. This strong association is tied to the impacts of EASJ on a stationary Rossby wave train emanating from East Asia and the tropical Pacific to the North Atlantic, leading to changes in vertical wind shear in the Atlantic Main Development Region (80–20°W, 10–20°N).

     
    more » « less
  2. Abstract

    Tropical cyclone (TC) forecast verification techniques have traditionally focused on track and intensity, as these are some of the most important characteristics of TCs and are often the principal verification concerns of operational forecast centers. However, there is a growing need to verify other aspects of TCs as process-based validation techniques may be increasingly necessary for further track and intensity forecast improvements as well as improving communication of the broad impacts of TCs including inland flooding from precipitation. Here we present a set of TC-focused verification methods available via the Model Evaluation Tools (MET) ranging from traditional approaches to the application of storm-centric coordinates and the use of feature-based verification of spatially defined TC objects. Storm-relative verification using observed and forecast tracks can be useful for identifying model biases in precipitation accumulation in relation to the storm center. Using a storm-centric cylindrical coordinate system based on the radius of maximum wind adds additional storm-relative capabilities to regrid precipitation fields onto cylindrical or polar coordinates. This powerful process-based model diagnostic and verification technique provides a framework for improved understanding of feedbacks between forecast tracks, intensity, and precipitation distributions. Finally, object-based verification including land masking capabilities provides even more nuanced verification options. Precipitation objects of interest, either the central core of TCs or extended areas of rainfall after landfall, can be identified, matched to observations, and quickly aggregated to build meaningful spatial and summary verification statistics.

     
    more » « less
  3. Abstract

    Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future.

     
    more » « less
  4. Abstract

    The central theme of this study is to explore if and how the intensity of a tropical cyclone (TC) is related to its size. This subject has puzzled atmospheric scientists since the work of Deppermann, but the existence of this relationship still remains elusive. The improved understanding of the intensity–size relationship of TCs will help coastal communities to prepare for the maximum potential damage as both the intensity and size have important impacts on wind damages, storm surges, and flooding. This study considers 33 years (1988–2020) of TC records of maximum surface winds and radii of maximum and gale-force winds over the North Atlantic basin derived from the Extended Best Track Dataset. Analysis of these TC records reveals a robust positive correlation between loss of Earth and relative angular momentum. This finding together with the inspiration from the seminal work of Emanuel and his collaborators leads us to combine absolute angular momentum and its frictional loss as a radially invariant quantity, referred to as “effective absolute angular momentum” (eAAM), for radial profiles of TC surface winds. It is demonstrated that the eAAM model can reproduce the observed complex intensity–size relationship of TCs, which can be further reduced to a quasi-linear one after factoring out the angular momentum loss and the radius of maximum surface winds. The findings of this study would not only advance our understanding of the complex TC intensity–size relation, but also allow for operational assessments of TC severity and potential damage just using its outer wind information.

     
    more » « less
  5. Abstract

    The Madden–Julian Oscillation (MJO) is widely acknowledged for its ability to modulate Northwest Pacific tropical cyclones (TCs), but a complete understanding of the underlying mechanisms remains uncertain. Beyond established effects of the MJO's relative humidity envelope, other dynamical factors have recently been invoked via new genesis potential indices and high‐resolution modeling studies. Here we revisit the ability of the MJO to modulate West Pacific TCs through a quasi‐explicit cyclone downscaling strategy driven by composited observations, paired later with a genesis index to investigate regional drivers of modulation. We reveal two distinct spatial modes of TC modulation in which the MJO's dynamic and thermodynamic effects act in tandem to increase TCs. In the South China Sea, for instance, shear reductions associated with the MJO's circulation lead to increasing potential intensity ahead of the arrival of a positive humidity anomaly, all of which combine for an extended period of cyclogenesis favorability.

     
    more » « less