Abstract Atlantic tropical cyclones (TCs) can cause significant societal and economic impacts, as 2019's Dorian serves to remind us of these storms' destructiveness. Decades of effort to understand and predict Atlantic TC activity have improved seasonal forecast skill, but large uncertainties still remain, in part due to an incomplete understanding of the drivers of TC variability. Here we identify an association between the East Asian Subtropical Jet Stream (EASJ) during July–October and the frequency of Atlantic TCs (wind speed ≥34 knot) and hurricanes (wind speed ≥64 knot) during August–November based on observations for 1980–2018. This strong association is tied to the impacts of EASJ on a stationary Rossby wave train emanating from East Asia and the tropical Pacific to the North Atlantic, leading to changes in vertical wind shear in the Atlantic Main Development Region (80–20°W, 10–20°N). 
                        more » 
                        « less   
                    
                            
                            The NCAR GPS Dropwindsonde and Its Impact on Hurricane Operations and Research
                        
                    
    
            Abstract The global positioning system dropwindsonde has provided thousands of high-resolution kinematic and thermodynamic soundings in and around tropical cyclones (TCs) since 1997. These data have revolutionized the understanding of TC structure, improved forecasts, and validated observations from remote sensing platforms. About 400 peer-reviewed studies on TCs using these data have been published to date. This paper reviews the history of dropwindsonde observations, changes to dropwindsonde technology since it was first used in TCs in 1982, and how the data have improved forecasting and changed our understanding of TCs. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10535937
- Publisher / Repository:
- AMERICAN METEOROLOGICAL SOCIETY
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 104
- Issue:
- 11
- ISSN:
- 0003-0007
- Page Range / eLocation ID:
- E2134 to E2154
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future.more » « less
- 
            Regional MJO Modulation of Northwest Pacific Tropical Cyclones Driven by Multiple Transient ControlsAbstract The Madden–Julian Oscillation (MJO) is widely acknowledged for its ability to modulate Northwest Pacific tropical cyclones (TCs), but a complete understanding of the underlying mechanisms remains uncertain. Beyond established effects of the MJO's relative humidity envelope, other dynamical factors have recently been invoked via new genesis potential indices and high‐resolution modeling studies. Here we revisit the ability of the MJO to modulate West Pacific TCs through a quasi‐explicit cyclone downscaling strategy driven by composited observations, paired later with a genesis index to investigate regional drivers of modulation. We reveal two distinct spatial modes of TC modulation in which the MJO's dynamic and thermodynamic effects act in tandem to increase TCs. In the South China Sea, for instance, shear reductions associated with the MJO's circulation lead to increasing potential intensity ahead of the arrival of a positive humidity anomaly, all of which combine for an extended period of cyclogenesis favorability.more » « less
- 
            Heavier Inner-core Rainfall of Major Hurricanes in the North Atlantic Basin than Other Global BasinsAbstract Based on 19 years of precipitation data collected by the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, a comparison of the rainfall produced by tropical cyclones (TCs) in different global basins is presented. A total of 1789 TCs were examined in the period from 1998 to 2016 by taking advantage of more than 47,737 observations of TRMM/GPM 3B42 multi-satellite derived rainfall amounts. The axisymmetric component of the TC rainfall is analyzed in all TC-prone basins. The resulting radial profiles show that major hurricanes in the Atlantic basin exhibit significantly heavier inner-core rainfall rates than those in any other basins. To explain the possible causes of this difference, rainfall distributions for major hurricanes are stratified according to different TC intensity and environmental variables. Based on the examination of these parameters, we found that the stronger rainfall rates in the Atlantic major hurricanes are associated with higher values of convective available potential energy, drier relative humidity in the low to middle troposphere, colder air temperature at 250hPa, and stronger vertical wind shear than other basins. These results have important implications in the refining of our understanding of the mechanisms of TC rainfall.more » « less
- 
            Abstract Tropical cyclones (TCs) cause negative sea surface temperature anomalies by vertical mixing and other processes. Such cold wakes can cover substantial areas and persist for a month or longer. It has long been hypothesized that cold wakes left behind by intense TCs reduce the likelihood of subsequent TC development. Here, we combine satellite observations, a global atmospheric model, and a high‐resolution TC downscaling model to test this hypothesis and examine the feedback of cold wakes on subsequent TC tracks and intensities. Overall, cold wakes reduce the frequency of weak to moderate events but increase the incidence of very intense events. There is large spatial heterogeneity in the TC response, such as a southward shift of track density in response to cold wakes similar to that generated by Florence (2018). Cold wakes may be important for modeling and forecasting TCs, interpreting historical records and understanding feedbacks in a changing climate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    