skip to main content


Title: Heavier Inner-core Rainfall of Major Hurricanes in the North Atlantic Basin than Other Global Basins
Abstract

Based on 19 years of precipitation data collected by the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, a comparison of the rainfall produced by tropical cyclones (TCs) in different global basins is presented. A total of 1789 TCs were examined in the period from 1998 to 2016 by taking advantage of more than 47,737 observations of TRMM/GPM 3B42 multi-satellite derived rainfall amounts. The axisymmetric component of the TC rainfall is analyzed in all TC-prone basins. The resulting radial profiles show that major hurricanes in the Atlantic basin exhibit significantly heavier inner-core rainfall rates than those in any other basins. To explain the possible causes of this difference, rainfall distributions for major hurricanes are stratified according to different TC intensity and environmental variables. Based on the examination of these parameters, we found that the stronger rainfall rates in the Atlantic major hurricanes are associated with higher values of convective available potential energy, drier relative humidity in the low to middle troposphere, colder air temperature at 250hPa, and stronger vertical wind shear than other basins. These results have important implications in the refining of our understanding of the mechanisms of TC rainfall.

 
more » « less
Award ID(s):
1947304
PAR ID:
10487188
Author(s) / Creator(s):
;
Publisher / Repository:
JCLI 2021
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Page Range / eLocation ID:
1 to 35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Theoretical models of the potential intensity of tropical cyclones (TCs) suggest that TC rainfall rates should increase in a warmer environment but limited observational evidence has been studied to test these hypotheses on a global scale. The present study explores the general trends of TC rainfall rates based on a 19-year (1998–2016) time series of continuous observational data collected by the Tropical Rainfall Measuring Mission and the Global Precipitation Measurement mission. Overall, observations exhibit an increasing trend in the average TC rainfall rate of about 1.3% per year, a fact that is contributed mainly by the combined effect of the reduction in the inner-core rainfall rate with the increase in rainfall rate on the rainband region. We found that the increasing trend is more pronounced in the Northwestern Pacific and North Atlantic than in other global basins, and it is relatively uniform for all TC intensities. Further analysis shows that these trends are associated with increases in sea surface temperature and total precipitable water in the TC environment.

     
    more » « less
  2. Abstract

    Estimating the magnitude of tropical cyclone (TC) rainfall at different landfalling stages is an important aspect of the TC forecast that directly affects the level of response from emergency managers. In this study, a climatology of the TC rainfall magnitude as a function of the location of the TC centers within distance intervals from the coast and the percentage of the raining area over the land is presented on a global scale. A total of 1834 TCs in the period from 2000 until 2019 are analyzed using satellite information to characterize the precipitation magnitude, volumetric rain, rainfall area, and axial-symmetric properties within the proposed landfalling categories, with an emphasis on the postlandfall stages. We found that TCs experience rainfall maxima in regions adjacent to the coast when more than 50% of their rainfall area is over the water. TC rainfall is also analyzed over the entire TC extent and the portion over land. When the total extent is considered, rainfall intensity, volumetric rain, and rainfall area increase with wind speed intensity. However, once it is quantified over the land only, we found that rainfall intensity exhibits a nearly perfect inversely proportional relation with the increase in TC rainfall area. In addition, when a TC with life maximum intensity of a major hurricane makes landfall as a tropical depression or tropical storm, it usually produces the largest spatial extent and the highest volumetric rain.

    Significant Statement

    This study aims to describe the cycle of tropical cyclone (TC) precipitation magnitude through a new approach that defines the landfall categories as a function of the percentage of the TC precipitating area over the land and ocean, along with the location of the TC centers within distance intervals from the coast. Our central hypothesis is that TC rainfall should exhibit distinct features in the long-term satellite time series for each of the proposed stages. We particularly focused on the overland events due to their effects on human activities, finding that the TCs that at some point of their life cycle reached major hurricane strength and made landfall as a tropical storm or tropical depression produced the highest volumetric rain over the land surface. This research also presents key observational evidence of the relationship between the rain rate, raining area, and volumetric rain for landfalling TCs.

     
    more » « less
  3. Abstract

    Tropical cyclones (TCs) generate extreme precipitation with severe impacts across large coastal and inland areas, calling for accurate frequency estimation methods. Statistical approaches that take into account the physical mechanisms responsible for these extremes can help reduce the estimation uncertainty. Here we formulate a mixed‐population Metastatistical Extreme Value Distribution explicitly incorporating non‐TC and TC‐induced rainfall and evaluate its implications on long series of daily rainfall for six major U.S. urban areas impacted by these storms. We find statistically significant differences between the distributions of TC‐ and non‐TC‐related precipitation; moreover, including mixtures of distributions improves the estimation of the probability of extreme precipitation where TCs occur more frequently. These improvements are greater when rainfall aggregated over durations longer than one day are considered.

     
    more » « less
  4. Abstract

    Organized deep convective activity has been routinely monitored by satellite precipitation radar from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM). Organized deep convective activity is found to increase not only with sea surface temperature (SST) above 27°C, but also with low-level wind shear. Precipitation shows a similar increasing relationship with both SST and low-level wind shear, except for the highest low-level wind shear. These observations suggest that the threshold for organized deep convection and precipitation in the tropics should consider not only SST, but also vertical wind shear. The longwave cloud radiative feedback, measured as the tropospheric longwave cloud radiative heating per amount of precipitation, is found to generally increase with stronger organized deep convective activity as SST and low-level wind shear increase. Organized deep convective activity, the longwave cloud radiative feedback, and cirrus ice cloud cover per amount of precipitation also appear to be controlled more strongly by SST than by the deviation of SST from its tropical mean. This study hints at the importance of non-thermodynamic factors such as vertical wind shear for impacting tropical convective structure, cloud properties, and associated radiative energy budget of the tropics.

    Significance Statement

    This study uses tropical satellite observations to demonstrate that vertical wind shear affects the relationship between sea surface temperature and tropical organized deep convection and precipitation. Shear also affects associated cloud properties and how clouds affect the flow of radiation in the atmosphere. Although how vertical wind shear affects convective organization has long been studied in the mesoscale community, the study attempts to apply mesoscale theory to explain the large-scale mean organization of tropical deep convection, cloud properties, and radiative feedbacks. The study also provides a quantitative observational baseline of how vertical wind shear modifies cloud radiative effects and convective organization, which can be compared to numerical simulations.

     
    more » « less
  5. Abstract

    Understanding changes in the hazard component of climate risk is important to inform societal resilience planning in a changing climate. Here, we examine local changes in wind speed, rainfall, and flooding related to tropical cyclones (TCs) and compare them across statistical and dynamical modeling approaches. Our focus region is the Delaware River Basin, located in the northeastern United States. We pair event‐based downscaling with large ensemble climate model information to capture the details of extreme TC wind, rain, and flooding, and their likelihood, in a changing climate. We identify local TCs in the Community Earth System Model 2 Large Ensemble (CESM2‐LENS). We find fewer TCs in the future, but these future storms have higher wind speeds and are wetter. We also find that TCs produce heavier 3‐day precipitation distributions than all other summertime weather events, with TCs constituting a larger percentage of the upper tail of the full precipitation distribution. With this information, we identify a small collection of 200‐year return events and compare the resulting TC rain and wind across dynamical and statistical downscaling methods. We find that dynamical downscaling produces peak rain rates far higher than CESM or the statistical downscaling method. It can also produce quite different future changes in precipitation totals for the small set of events considered here. This leads to vastly different flood responses. Overall, our results highlight the need to interpret future changes of event‐based simulations in the context of downscaling method limitations.

     
    more » « less