skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Giant polyketide synthase enzymes in the biosynthesis of giant marine polyether toxins
Prymnesium parvumare harmful haptophyte algae that cause massive environmental fish kills. Their polyketide polyether toxins, the prymnesins, are among the largest nonpolymeric compounds in nature and have biosynthetic origins that have remained enigmatic for more than 40 years. In this work, we report the “PKZILLAs,” massiveP. parvumpolyketide synthase (PKS) genes that have evaded previous detection. PKZILLA-1 and -2 encode giant protein products of 4.7 and 3.2 megadaltons that have 140 and 99 enzyme domains. Their predicted polyene product matches the proposed pre-prymnesin precursor of the 90-carbon–backbone A-type prymnesins. We further characterize the variant PKZILLA-B1, which is responsible for the shorter B-type analog prymnesin-B1, fromP. parvumRCC3426 and thus establish a general model of haptophyte polyether biosynthetic logic. This work expands expectations of genetic and enzymatic size limits in biology.  more » « less
Award ID(s):
1831493
PAR ID:
10535969
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
385
Issue:
6709
ISSN:
0036-8075
Page Range / eLocation ID:
671 to 678
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Heterologous expression of polyketide synthase (PKS) genes inEscherichia colihas enabled the production of various valuable natural and synthetic products. However, the limited availability of malonyl-CoA (M-CoA) inE. coliremains a substantial impediment to high-titer polyketide production. Here we address this limitation by disrupting the native M-CoA biosynthetic pathway and introducing an orthogonal pathway comprising a malonate transporter and M-CoA ligase, enabling efficient M-CoA biosynthesis under malonate supplementation. This approach substantially increases M-CoA levels, enhancing fatty acid and polyketide titers while reducing the promiscuous activity of PKSs toward undesired acyl-CoA substrates. Subsequent adaptive laboratory evolution of these strains provides insights into M-CoA regulation and identifies mutations that further boost M-CoA and polyketide production. This strategy improvesE. colias a host for polyketide biosynthesis and advances understanding of M-CoA metabolism in microbial systems. 
    more » « less
  2. Abstract Type 1 polyketides are a major class of natural products used as antiviral, antibiotic, antifungal, antiparasitic, immunosuppressive, and antitumor drugs. Analysis of public microbial genomes leads to the discovery of over sixty thousand type 1 polyketide gene clusters. However, the molecular products of only about a hundred of these clusters are characterized, leaving most metabolites unknown. Characterizing polyketides relies on bioactivity-guided purification, which is expensive and time-consuming. To address this, we present Seq2PKS, a machine learning algorithm that predicts chemical structures derived from Type 1 polyketide synthases. Seq2PKS predicts numerous putative structures for each gene cluster to enhance accuracy. The correct structure is identified using a variable mass spectral database search. Benchmarks show that Seq2PKS outperforms existing methods. Applying Seq2PKS to Actinobacteria datasets, we discover biosynthetic gene clusters for monazomycin, oasomycin A, and 2-aminobenzamide-actiphenol. 
    more » « less
  3. Abstract Streptomycesbacteria are known for their prolific production of secondary metabolites, many of which have been widely used in human medicine, agriculture and animal health. To guide the effective prioritization of specific biosynthetic gene clusters (BGCs) for drug development and targeting the most prolific producer strains, knowledge about phylogenetic relationships ofStreptomycesspecies, genome-wide diversity and distribution patterns of BGCs is critical. We used genomic and phylogenetic methods to elucidate the diversity of major classes of BGCs in 1,110 publicly availableStreptomycesgenomes. Genome mining ofStreptomycesreveals high diversity of BGCs and variable distribution patterns in theStreptomycesphylogeny, even among very closely related strains. The most common BGCs are non-ribosomal peptide synthetases, type 1 polyketide synthases, terpenes, and lantipeptides. We also found that numerousStreptomycesspecies harbor BGCs known to encode antitumor compounds. We observed that strains that are considered the same species can vary tremendously in the BGCs they carry, suggesting that strain-level genome sequencing can uncover high levels of BGC diversity and potentially useful derivatives of any one compound. These findings suggest that a strain-level strategy for exploring secondary metabolites for clinical use provides an alternative or complementary approach to discovering novel pharmaceutical compounds from microbes. 
    more » « less
  4. Abstract Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) ofCaenorhabditis elegans, PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis. 
    more » « less
  5. The successful engineering of biosynthetic pathways hinges on understanding the factors that influence acyl carrier protein (ACP) stability and function. The stability and structure of ACPs can be influenced by the presence of divalent cations, but how this relates to primary sequence remains poorly understood. As part of a course‐based undergraduate research experience, we investigated the thermostability of type II polyketide synthase (PKS) ACPs. We observed an approximate 40 °C range in the thermostability among the 14 ACPs studied, as well as an increase in stability (5–26 °C) of the ACPs in the presence of divalent cations. Distribution of charges in the helix II‐loop–helix III region was found to impact the enthalpy of denaturation. Taken together, our results reveal clues as to how the sequence of type II PKS ACPs relates to their structural stability, information that can be used to study how ACP sequence relates to function. © 2018 American Institute of Chemical EngineersAIChE J, 64: 4308–4318, 2018 
    more » « less