Agriculture is driving biodiversity loss, and future bioenergy cropping systems have the potential to ameliorate or exacerbate these effects. Using a long-term experimental array of 10 bioenergy cropping systems, we quantified diversity of plants, invertebrates, vertebrates, and microbes in each crop. For many taxonomic groups, alternative annual cropping systems provided no biodiversity benefits when compared to corn (the business-as-usual bioenergy crop in the United States), and simple perennial grass–based systems provided only modest gains. In contrast, for most animal groups, richness in plant-diverse perennial systems was much higher than in annual crops or simple perennial systems. Microbial richness patterns were more eclectic, although some groups responded positively to plant diversity. Future agricultural landscapes incorporating plant-diverse perennial bioenergy cropping systems could be of high conservation value. However, increased use of annual crops will continue to have negative effects, and simple perennial grass systems may provide little improvement over annual crops.
more »
« less
Bioenergy cropping systems shape ant community composition and functional roles
The adoption of biomass crops grown for energy is a likely source of major landscape change in coming decades during the transition from fossil fuels. There are a wide range of cropping systems that have not been widely deployed yet but could become commonplace, and our knowledge of their ecological attributes and biodiversity impacts is limited. Ants are prominent and functionally important components of grassland and agricultural ecosystems. Given their outsized influences on ecosystem structure and function, we sought to understand how ant communities are likely to be shaped by a range of bioenergy cropping systems. We characterized ant communities in a long-term experimental array in Michigan, USA containing ten dedicated bioenergy crops including annual monocultures, simple monoculture or near-monoculture perennial grasses, and complex polyculture systems. Community composition differed strongly among cropping systems, and ants were more abundant, species-rich, and functionally diverse in complex systems than in simpler systems, particularly annual crops. Our results illustrate the divergent effects that bioenergy crop adoption could have for ant communities and the important functions they carry out in agroecosystems.
more »
« less
- Award ID(s):
- 1832042
- PAR ID:
- 10536003
- Publisher / Repository:
- Frontiers Media
- Date Published:
- Journal Name:
- Frontiers in Conservation Science
- Volume:
- 4
- ISSN:
- 2673-611X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The relationship between diversity and stability remains a key question in ecology and has important consequences for understanding the sustainability (and profitability) of bioenergy cropping systems; yet to date, little work has been done to examine these relationships in agricultural systems directly. In this study, we evaluated the relationship between biodiversity (in number of planted species) and the stability of biomass production in four experimental bioenergy cropping systems established in Wisconsin and Michigan. Species composition and aboveground production were monitored at all sites for 8–10 years (2010–2019) allowing us to evaluate the temporal stability of biomass yield (defined as the temporal mean divided by the temporal SD) in these cropping systems. A major regional drought in 2012 also allowed us to evaluate resistance and resilience. Although three of the cropping systems were established with the same seed mixtures and were managed in the same way, species composition differed markedly between sites. This limited our ability to attribute differences within cropping systems across sites to the abundance of specific species. Overall, there was no clear relationship between planted species richness and yield stability in biomass production at these sites. At both sites, the lowest diversity system (switchgrass monoculture) had the highest interannual stability in production and was equivalent to that of the highest diversity treatment (prairie). Resilience to the drought was high in all treatments and did not differ among the four cropping systems; however, resistance to drought differed among systems and was highest in the switchgrass monocultures at both sites. The abundance of perennial C4grasses increased over time in all cropping systems, except for the successional plots. The persistence of annual species in the successional treatments at both sites likely contributed to low stability and high interannual turnover in this system. We found no evidence that increasing the diversity of planted species in bioenergy cropping systems enhances stability in aboveground biomass production; nor was there any difference in resistance or resilience to drought. The higher costs of establishing more diverse bioenergy cropping systems may be warranted if other ecosystem services, such as supporting diverse pollinator and predator insect species at the landscape scale, are desired from bioenergy crops in addition to biomass production.more » « less
-
The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long-term experiment. We quantified AMF root colonization, AMF extra-radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant-parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant-parasitic nematode (PPN) abundance was 2.3 × higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems.more » « less
-
Abstract Diverse and robust predator communities are important for effective prey suppression in natural and managed communities. Ants are ubiquitous components of terrestrial systems but their contributions to natural prey suppression is relatively understudied in temperate regions. Growing evidence suggests that ants can play a significant role in the removal of insect prey within grasslands, but their impact is difficult to separate from that of nonant predators. To test how ants may contribute to prey suppression in grasslands, we used poison baits (with physical exclosures) to selectively reduce the ant population in common garden settings, then tracked ant and nonant ground predator abundance and diversity, and removal of sentinel egg prey for 7 wk. We found that poison baits reduced ant abundance without a significant negative impact on abundance of nonant ground predators, and that a reduction in ant abundance decreased the proportion of sentinel prey eggs removed. Even a modest decrease (~20%) in abundance of several ant species, including the numerically dominant Lasius neoniger Emery (Hymenoptera: Formicidae), significantly reduced sentinel prey removal rates. Our results suggest that ants disproportionately contribute to ground-based predation of arthropod prey in grasslands. Changes in the amount of grasslands on the landscape and its management may have important implications for ant prevalence and natural prey suppression services in agricultural landscapes.more » « less
-
Abstract Bioenergy cropping systems can substantially contribute to climate change mitigation. However, limited information is available on how they affect soil characteristics, including pores and particulate organic matter (POM), both essential components of the soil C cycle. The objective of this study was to determine effects of bioenergy systems and field topography on soil pore characteristics, POM, and POM decomposition under new plant growth. We collected intact soil cores from two systems: monoculture switchgrass ( Panicum virgatum L.) and native prairie, at two contrasting topographical positions (depressions and slopes), planting half of the cores with switchgrass. Pore and POM characteristics were obtained using X-ray computed micro-tomography (μCT) (18.2 µm resolution) before and after new switchgrass growth. Diverse prairie vegetation led to higher soil C than switchgrass, with concomitantly higher volumes of 30–90 μm radius pores and greater solid-pore interface. Yet, that effect was present only in the coarse-textured soils on slopes and coincided with higher root biomass of prairie vegetation. Surprisingly, new switchgrass growth did not intensify decomposition of POM, but even somewhat decreased it in monoculture switchgrass as compared to non-planted controls. Our results suggest that topography can play a substantial role in regulating factors driving C sequestration in bioenergy systems.more » « less
An official website of the United States government

