skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Population genomics of four co-distributed frog species in a barrier island system
Abstract In nature, small populations are often of concern because of limited genetic diversity, which underlies adaptive potential in the face of environmental change. Assessing patterns of genetic variation within co-distributed species sampled across varied landscapes can therefore illuminate their capacity to persist over time. We sequenced new genome-wide sequence data (double-digest restriction site-associated DNA sequencing) for four frog species (Anaxyrus terrestris, Hyla cinerea, Hyla squirella, and Rana sphenocephala) sampled from two barrier islands and the adjacent mainland of northern Florida. We calculated genomic diversity metrics and analysed spatial patterns of genomic variation for each species. We found higher genomic diversity within mainland individuals compared to island individuals for all species, suggesting a consistent effect of small island area on diversity across species. Three species (all but A. terrestris) showed significant signatures of isolation by distance, and some clustering analyses indicated separation of island and mainland individuals within species. We identified subtle differences in the strength of these patterns among species, with the strongest genetic differentiation observed in R. sphenocephala. Finally, we found evidence of recent migration between island and mainland populations for all species, which likely explains the limited genetic structure observed and contributes to the persistence of these small populations.  more » « less
Award ID(s):
2112946
PAR ID:
10536025
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Biological Journal of the Linnean Society
ISSN:
0024-4066
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Huang, Jen-Pan; Wolf, Jason (Ed.)
    Abstract Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, e.g., typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare the genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson’s theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes. 
    more » « less
  2. ABSTRACT Although patterns of population genomic variation are well‐studied in animals, there remains room for studies that focus on non‐model taxa with unique biologies. Here we characterise and attempt to explain such patterns in mygalomorph spiders, which are generally sedentary, often occur as spatially clustered demes and show remarkable longevity. Genome‐wide single nucleotide polymorphism (SNP) data were collected for 500 individuals across a phylogenetically representative sample of taxa. We inferred genetic populations within focal taxa using a phylogenetically informed clustering approach, and characterised patterns of diversity and differentiation within‐ and among these genetic populations, respectively. Using phylogenetic comparative methods we asked whether geographical range sizes and ecomorphological variables (behavioural niche and body size) significantly explain patterns of diversity and differentiation. Specifically, we predicted higher genetic diversity in genetic populations with larger geographical ranges, and in small‐bodied taxa. We also predicted greater genetic differentiation in small‐bodied taxa, and in burrowing taxa. We recovered several significant predictors of genetic diversity, but not genetic differentiation. However, we found generally high differentiation across genetic populations for all focal taxa, and a consistent signal for isolation‐by‐distance irrespective of behavioural niche or body size. We hypothesise that high population genetic structuring, likely reflecting combined dispersal limitation and microhabitat specificity, is a shared trait for all mygalomorphs. Few studies have found ubiquitous genetic structuring for an entire ancient and species‐rich animal clade. 
    more » « less
  3. Hancock, Angela (Ed.)
    Abstract Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation. 
    more » « less
  4. Abstract Genomic data and machine learning approaches have gained interest due to their potential to identify adaptive genetic variation across populations and to assess species vulnerability to climate change. By identifying gene–environment associations for putatively adaptive loci, these approaches project changes to adaptive genetic composition as a function of future climate change (genetic offsets), which are interpreted as measuring the future maladaptation of populations due to climate change. In principle, higher genetic offsets relate to increased population vulnerability and therefore can be used to set priorities for conservation and management. However, it is not clear how sensitive these metrics are to the intensity of population and individual sampling. Here, we use five genomic datasets with varying numbers of SNPs (NSNPs = 7006–1,398,773), sampled populations (Npop = 23–47) and individuals (Nind = 185–595) to evaluate the estimation sensitivity of genetic offsets to varying degrees of sampling intensity. We found that genetic offsets are sensitive to the number of populations being sampled, especially with less than 10 populations and when genetic structure is high. We also found that the number of individuals sampled per population had small effects on the estimation of genetic offsets, with more robust results when five or more individuals are sampled. Finally, uncertainty associated with the use of different future climate scenarios slightly increased estimation uncertainty in the genetic offsets. Our results suggest that sampling efforts should focus on increasing the number of populations, rather than the number of individuals per populations, and that multiple future climate scenarios should be evaluated to ascertain estimation sensitivity. 
    more » « less
  5. Abstract Convergent evolution is often documented in organisms inhabiting isolated environments with distinct ecological conditions and similar selective regimes. Several Central America islands harbor dwarf Boa populations that are characterized by distinct differences in growth, mass, and craniofacial morphology, which are linked to the shared arboreal and feast-famine ecology of these island populations. Using high-density RADseq data, we inferred three dwarf island populations with independent origins and demonstrate that selection, along with genetic drift, has produced both divergent and convergent molecular evolution across island populations. Leveraging whole-genome resequencing data for 20 individuals and a newly annotated Boa genome, we identify four genes with evidence of phenotypically relevant protein-coding variation that differentiate island and mainland populations. The known roles of these genes involved in body growth (PTPRS, DMGDH, and ARSB), circulating fat and cholesterol levels (MYLIP), and craniofacial development (DMGDH and ARSB) in mammals link patterns of molecular evolution with the unique phenotypes of these island forms. Our results provide an important genome-wide example for quantifying expectations of selection and convergence in closely related populations. We also find evidence at several genomic loci that selection may be a prominent force of evolutionary change—even for small island populations for which drift is predicted to dominate. Overall, while phenotypically convergent island populations show relatively few loci under strong selection, infrequent patterns of molecular convergence are still apparent and implicate genes with strong connections to convergent phenotypes. 
    more » « less