Abstract Many applications require randomly sampling bipartite graphs with fixed degrees or randomly sampling incidence matrices with fixed row and column sums. Although several sampling algorithms exist, the ‘curveball’ algorithm is the most efficient with an asymptotic time complexity of $O(n~log~n)$ and has been proven to sample uniformly at random. In this article, we introduce the ‘fastball’ algorithm, which adopts a similar approach but has an asymptotic time complexity of $O(n)$. We show that a C$$\texttt{++}$$ implementation of fastball randomly samples large bipartite graphs with fixed degrees faster than curveball, and illustrate the value of this faster algorithm in the context of the fixed degree sequence model for backbone extraction.
more »
« less
Variational Estimators of the Degree-corrected Latent Block Model for Bipartite Networks
Bipartite graphs are ubiquitous across various scientific and engineering fields. Simultaneously grouping the two types of nodes in a bipartite graph via biclustering represents a fundamental challenge in network analysis for such graphs. The latent block model (LBM) is a commonly used model-based tool for biclustering. However, the effectiveness of the LBM is often limited by the influence of row and column sums in the data matrix. To address this limitation, we introduce the degree-corrected latent block model (DC-LBM), which accounts for the varying degrees in row and column clusters, significantly enhancing performance on real-world data sets and simulated data. We develop an efficient variational expectation-maximization algorithm by creating closed-form solutions for parameter estimates in the M steps. Furthermore, we prove the label consistency and the rate of convergence of the variational estimator under the DC-LBM, allowing the expected graph density to approach zero as long as the average expected degrees of rows and columns approach infinity when the size of the graph increases.
more »
« less
- Award ID(s):
- 2245381
- PAR ID:
- 10536039
- Publisher / Repository:
- https://jmlr.org/papers/
- Date Published:
- Journal Name:
- Journal of machine learning research
- Volume:
- 25
- ISSN:
- 1533-7928
- Page Range / eLocation ID:
- 150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a model for online graph problems where algorithms are given access to an oracle that predicts (e.g., based on modeling assumptions or on past data) the degrees of nodes in the graph. Within this model, we study the classic problem of online bipartite matching, and a natural greedy matching algorithm called MinPredictedDegree, which uses predictions of the degrees of offline nodes. For the bipartite version of a stochastic graph model due to Chung, Lu, and Vu where the expected values of the offline degrees are known and used as predictions, we show that MinPredictedDegree stochastically dominates any other online algorithm, i.e., it is optimal for graphs drawn from this model. Since the “symmetric” version of the model, where all online nodes are identical, is a special case of the well-studied “known i.i.d. model”, it follows that the competitive ratio of MinPredictedDegree on such inputs is at least 0.7299. For the special case of graphs with power law degree distributions, we show that MinPredictedDegree frequently produces matchings almost as large as the true maximum matching on such graphs. We complement these results with an extensive empirical evaluation showing that MinPredictedDegree compares favorably to state-of-the-art online algorithms for online matching.more » « less
-
Representation learning over graph structured data has been mostly studied in static graph settings while efforts for modeling dynamic graphs are still scant. In this paper, we develop a novel hierarchical variational model that introduces additional latent random variables to jointly model the hidden states of a graph recurrent neural network (GRNN) to capture both topology and node attribute changes in dynamic graphs. We argue that the use of high-level latent random variables in this variational GRNN (VGRNN) can better capture potential variability observed in dynamic graphs as well as the uncertainty of node latent representation. With semi-implicit variational inference developed for this new VGRNN architecture (SI-VGRNN), we show that flexible non-Gaussian latent representations can further help dynamic graph analytic tasks. Our experiments with multiple real-world dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently outperform the existing baseline and state-of-the-art methods by a significant margin in dynamic link prediction.more » « less
-
Representation learning over graph structured data has been mostly studied in static graph settings while efforts for modeling dynamic graphs are still scant. In this paper, we develop a novel hierarchical variational model that introduces additional latent random variables to jointly model the hidden states of a graph recurrent neural network (GRNN) to capture both topology and node attribute changes in dynamic graphs. We argue that the use of high-level latent random variables in this variational GRNN (VGRNN) can better capture potential variability observed in dynamic graphs as well as the uncertainty of node latent representation. With semi-implicit variational inference developed for this new VGRNN architecture (SI-VGRNN), we show that flexible non-Gaussian latent representations can further help dynamic graph analytic tasks. Our experiments with multiple real-world dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently outperform the existing baseline and state-of-the-art methods by a significant margin in dynamic link prediction.more » « less
-
Exploring coordinated relationships is important for sense making of data in various fields, such as intelligence analysis. To support such investigations, visual analysis tools use biclustering to mine relationships in bipartite graphs and visualize the resulting biclusters with standard graph visualization techniques. Due to overlaps among biclusters, such visualizations can be cluttered (e.g., with many edge crossings), when there are a large number of biclusters. Prior work attempted to resolve this problem by automatically ordering nodes in a bipartite graph. However, visual clutter is still a serious problem, since the number of displayed biclusters remains unchanged. We propose bicluster aggregation as an alternative approach, and have developed two methods of interactively merging biclusters. These interactive bicluster aggregations help organize similar biclusters and reduce the number of displayed biclusters. Initial expert feedback indicates potential usefulness of these techniques in practice.more » « less
An official website of the United States government

