Abstract Carbon dioxide capture technologies are set to play a vital role in mitigating the current climate crisis. Solid‐state17O NMR spectroscopy can provide key mechanistic insights that are crucial to effective sorbent development. In this work, we present the fundamental aspects and complexities for the study of hydroxide‐based CO2capture systems by17O NMR. We perform static density functional theory (DFT) NMR calculations to assign peaks for general hydroxide CO2capture products, finding that17O NMR can readily distinguish bicarbonate, carbonate and water species. However, in application to CO2binding in two test case hydroxide‐functionalised metal‐organic frameworks (MOFs) – MFU‐4l and KHCO3‐cyclodextrin‐MOF, we find that a dynamic treatment is necessary to obtain agreement between computational and experimental spectra. We therefore introduce a workflow that leverages machine‐learning force fields to capture dynamics across multiple chemical exchange regimes, providing a significant improvement on static DFT predictions. In MFU‐4l, we parameterise a two‐component dynamic motion of the bicarbonate motif involving a rapid carbonyl seesaw motion and intermediate hydroxyl proton hopping. For KHCO3‐CD‐MOF, we combined experimental and modelling approaches to propose a new mixed carbonate‐bicarbonate binding mechanism and thus, we open new avenues for the study and modelling of hydroxide‐based CO2capture materials by17O NMR.
more »
« less
Carbon capture in polymer-based electrolytes
Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2capture behavior and transport properties of these electrolytes after CO2capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2capture. Quantitative13C NMR spectra collected at variable temperatures reveal that absorbed CO2exists as carbamates (RHNCOO−or RR′NCOO−) and carbonate/bicarbonate (CO32−/HCO3−). The transport properties of PEI and NOHM-I-PEI studied using1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.
more »
« less
- Award ID(s):
- 1927325
- PAR ID:
- 10536360
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 16
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We have been interested in the development of rubisco‐based biomimetic systems for reversible CO2capture from air. Our design of the chemical CO2capture and release (CCR) system is informed by the understanding of the binding of the activator CO2(ACO2) in rubisco (ribulose‐1,5‐bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys‐Asp‐Asp‐Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2capture reaction. We are studying the structural chemistry and the thermodynamics of CO2capture based on the tetrapeptide CH3CO−KDDE−NH2(“KDDE”) in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of1H NMR and13C NMR analyses of CO2capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of1H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1(R) for the reaction R−NH2+CO2R−NH−COOH requires the solution of a multi‐equilibrium equation system, which accounts for the dissociation constantsK2andK3controlling carbonate and bicarbonate concentrations, the acid dissociation constantK4of the conjugated acid of the amine, and the acid dissociation constantK5of the alkylcarbamic acid. We show how the multi‐equilibrium equation system can be solved with the measurements of the daughter/parent ratioX, the knowledge of the pH values, and the initial concentrations [HCO3−]0and [R‐NH2]0. For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1(Bu)=−1.57 kcal/mol and ΔG1(KDDE)=−1.17 kcal/mol. Both CO2capture reactions are modestly exergonic and thereby ensure reversibility in an energy‐efficient manner. These results validate the hypothesis that KDDE‐type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.more » « less
-
Abstract Electrochemical CO2reduction reaction (CO2‐RR) in non‐aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO2solubility and limits the formation of HCO3−and CO32−anions. Metal–organic frameworks (MOFs) in non‐aqueous CO2‐RR makes an attractive system for CO2capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition. In this work, electrically conductive and stable Zirconium (Zr)‐based porphyrin MOF, specifically PCN‐222, metalated with a single‐atom Cu has been explored, which serves as an efficient single‐atom catalyst (SAC) for CO2‐RR. PCN‐ 222(Cu) demonstrates a substantial enhancement in redox activity due to the synergistic effect of the Zr matrix and the single‐atom Cu site, facilitating complete reduction of C2species under non‐aqueous electrolytic conditions. The current densities achieved (≈100 mA cm−2) are 4–5 times higher than previously reported values for MOFs, with a faradaic efficiency of up to 40% for acetate production, along with other multivariate C2products, which have never been achieved previously in non‐aqueous systems. Characterization using X‐ray and various spectroscopic techniques, reveals critical insights into the role of the Zr matrix and Cu sites in CO2reduction, benchmarking PCN‐222(Cu) for MOF‐based SAC electrocatalysis.more » « less
-
Abstract To enhance Li+transport in all‐solid‐state batteries (ASSBs), harnessing localized nanoscale disorder can be instrumental, especially in sulfide‐based solid electrolytes (SEs). In this investigation, the transformation of the model SE, Li3PS4, is delved into via the introduction of LiBr.31P nuclear magnetic resonance (NMR)unveils the emergence of a glassy PS43−network interspersed with Br−.6Li NMR corroborates swift Li+migration between PS43−and Br−, with increased Li+mobility indicated by NMR relaxation measurements. A more than fourfold enhancement in ionic conductivity is observed upon LiBr incorporation into Li3PS4. Moreover, a notable decrease in activation energy underscores the pivotal role of Br−incorporation within the anionic lattice, effectively reducing the energy barrier for ion conduction and transitioning Li+transport dimensionality from 2D to 3D. The compatibility of Li3PS4with Li metal is improved through LiBr incorporation, alongside an increase in critical current density from 0.34 to 0.50 mA cm−2, while preserving the electrochemical stability window. ASSBs with 3Li3PS4:LiBr as the SE showcase robust high‐rate and long‐term cycling performance. These findings collectively indicate the potential of lithium halide incorporation as a promising avenue to enhance the ionic conductivity and stability of SEs.more » « less
-
Ion Coordination and Transport in Magnesium Polymer Electrolytes Based on Polyester-co-PolycarbonateMagnesium-ion-conducting solid polymer electrolytes have been studied for rechargeable Mg metal batteries, one of the beyond-Li-ion systems. In this paper, magnesium polymer electrolytes with magnesium bis(trifluoromethane)sulfonimide (Mg(TFSI)2) salt in poly(ε-caprolactone-co-trimethylene carbonate) (PCL-PTMC) were investigated and compared with the poly(ethylene oxide) (PEO) analogs. Both thermal properties and vibrational spectroscopy indicated that the total ion conduction in the PEO electrolytes was dominated by the anion conduction due to strong polymer coordination with fully dissociated Mg2+. On the other hand, in PCL-PTMC electrolytes, there is relatively weaker polymer–cation coordination and increased anion–cation coordination. Sporadic Mg- and F-rich particles were observed on the Cu electrodes after polarization tests in Cu|Mg cells with PCL-PTMC electrolyte, suggesting that Mg was conducted in the ion complex form (MgxTFSIy) to the copper working electrode to be reduced which resulted in anion decomposition. However, the Mg metal deposition/stripping was not favorable with either Mg(TFSI)2in PCL-PTMC or Mg(TFSI)2in PEO, which inhibited quantitative analysis of magnesium conduction. A remaining challenge is thus to accurately assess transport numbers in these systems.more » « less
An official website of the United States government

