skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Europium anomalies in zircon: A signal of crustal depth?
Trace element concentrations and ratios in zircon provide important indicators of the petrological processes that operate in igneous and metamorphic systems. In granitoids, the compositions of zircon have been linked to the behaviour of garnet and plagioclase—pressure-sensitive minerals—in the source during partial melting. This has led to the proposal that Europium anomalies in detrital zircon are linked to the depth of crustal melting or magmatic differentiation and are a proxy for average crustal thickness. In addition to the mineral assemblage present during partial melting, Eu anomalies in zircon are also sensitive to redox conditions as well as magma evolution during extraction, ascent, and emplacement. Here we quantitatively model how rock type, mineral assemblages, redox changes, and reaction sequences influence Eu anomalies of zircon in equilibrium with silicate melt. Partial melting of metasedimentary rocks and metabasites yields felsic to intermediate melts with a large range of Eu anomalies, which do not correlate simply with pressure (i.e. depth) of melting. Europium anomalies of zircon associated with partial melting of metasedimentary rocks are most sensitive to temperature whereas Eu anomalies associated with metabasite melting are controlled by plagioclase proportion—a function of pressure, temperature, and rock composition—as well as changes in oxygen fugacity. Furthermore, magmatic crystallization of granitoids can increase or decrease Eu anomalies in zircon from those of the initial (anatectic) melt. Therefore, Eu anomalies in zircon should not be used as a proxy for the crustal thickness or depth of melting but can be used to track the complex processes of metamorphism, partial melting, and magmatic differentiation in modern and ancient systems. Secular changes of Eu/Eu* from the zircon archive may reflect a change in thermal gradients of crustal melting or an increase in the reworking of sedimentary rocks over time.  more » « less
Award ID(s):
2022746
PAR ID:
10536378
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Earth and Planetary Science Letters
Volume:
622
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
118405
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Sierra Nevada Batholith is a record of copious magmatism caused by subduction of the Farallon oceanic plate under the western margin of North America during much of the Mesozoic Era, between 256 and 80 Ma. The diversity of rocks produced during these sub-surface interactions depends on several variables, including fluid availability, melt source, and mantle partial melt emplacement geometry (Ducea et al., 2015). The analysis of zircon is particularly appealing because zircon is a robust mineral that endures periods weathering and erosion and commonly lingers as detrital crystals in the rock record. It thus has the potential to add value as a lens into global magmatism and planetary evolution given its use as a thermometer (Watson and Ferry, 2007), and measure of magma source composition (Davies et al. 2021). Several researchers suggest that zircon can be a useful tool for constraining depth of crystallization (Tang et al. 2020). Building on thesis work on the utility of europium anomalies in zircon to model depths and, by proxy, crustal thickness for batholithic granitoids, this project provides additional data and insight to understand spatially and temporally varied trends of the arc’s plutonic record. Magma emplacement occurs in pulses and typically exhibits an eastward younging trend during the Mesozoic (Chen and Moore, 1982). Chinen (2022) found that the arc’s Western Margin exhibits both younging and thickening trends towards the east. Recent research exposed the issues associated with traditional cerium anomaly calculation because of a reliance on lanthanum, a poorly analyzed element (Loader et al., 2022). We incorporate these new methods to calculate zircon metrics for our data; this project further constrains the precision of interpretations about geochemical trends using laboratory analysis and zircon because it draws on a large and prolific database of plutonic trace element geochemistry. Because multiple magmatic and environmental processes affect zircon crystallization compositions, we use broad suites of zircon (e.g. rare earth elements, oxygen isotopes) and whole rock (XRF, trace elements, isotopes, additional minerals) geochemical analyses to elucidate aspects of previous research (Brady and Lackey, 2022; Chinen, 2022) and to build upon noted trends of the plutonic Cordilleran record. 
    more » « less
  2. null (Ed.)
    Abstract The 119 Ma Dinkey Dome pluton in the central Sierra Nevada Batholith is a peraluminous granite and contains magmatic garnet and zircon that are complexly zoned with respect to oxygen isotope ratios. Intracrystalline SIMS analysis tests the relative importance of magmatic differentiation processes vs. partial melting of metasedimentary rocks. Whereas δ18O values of bulk zircon concentrates are uniform across the entire pluton (7.7‰ VSMOW), zircon crystals are zoned in δ18O by up to 1.8‰, and when compared to late garnet, show evidence of changing magma chemistry during multiple interactions of the magma with wall rock during crustal transit. The evolution from an early high-δ18O magma [δ18O(WR) = 9.8‰] toward lower values is shown by high-δ18O zircon cores (7.8‰) and lower δ 18O rims (6.8‰). Garnets from the northwest side of the pluton show a final increase in δ18O with rims reaching 8.1‰. In situ REE measurements show zircon is magmatic and grew before garnets. Additionally, δ18O in garnets from the western side of the pluton are consistently higher (avg = 7.3‰) relative to the west (avg = 5.9‰). These δ18O variations in zircon and garnet record different stages of assimilation and fractional crystallization whereby an initially high-δ18O magma partially melted low-δ18O wallrock and was subsequently contaminated near the current level of emplacement by higher δ18O melts. Collectively, the comparison of δ18O zoning in garnet and zircon shows how a peraluminous pluton can be constructed from multiple batches of variably contaminated melts, especially in early stages of arc magmatism where magmas encounter significant heterogeneity of wall-rock assemblages. Collectively, peraluminous magmas in the Sierran arc are limited to small <100 km2 plutons that are intimately associated with metasedimentary wall rocks and often surrounded by later and larger metaluminous tonalite and granodiorite plutons. The general associations suggest that early-stage arc magmas sample crustal heterogeneities in small melt batches, but that with progressive invigoration of the arc, such compositions are more effectively blended with mantle melts in source regions. Thus, peraluminous magmas provide important details of the nascent Sierran arc and pre-batholithic crustal structure. 
    more » « less
  3. Granitic rocks, interpreted to be related to crustal melting, were emplaced into regions of thickened crust in southern Arizona during the Laramide orogeny (80–40 Ma). Laramide-age anatectic rocks are exposed as plutons, sills, and dike networks that are commonly found in the exhumed footwalls of metamorphic core complexes. This study investigates newly discovered exposures of granodioritic–leucogranitic rocks from three intrusive phases in the footwall of the Pinaleño–Jackson Mountain metamorphic core complex of southeastern Arizona, called the Relleno suite. Zircon U–Pb geochronology indicates that the suite was emplaced from 58 to 52 Ma. Zircon Lu/Hf isotope geochemistry, whole-rock Sr and Nd isotope geochemistry, and mineral O isotope geochemistry were used to investigate the source of these rocks and evaluate whether they are related to crustal anatexis. Average zircon εHf(t) values of the suite range from −4.7 to −7.9, whole-rock εNd(i) and 87Sr/86Sr(i) values range from −9.4 to −11.8 and 0.7064 to 0.7094 respectively, and quartz δ18OVSMOW values range from 6.8 to 9.4 ‰. Isotopic and geochemical data of these rocks are consistent with derivation from and assimilation of intermediate–mafic (meta)igneous rocks, at deep crustal levels, and are supported by thermodynamic melt models of Proterozoic igneous rocks equivalent to those exposed in the Pinaleño Mountains. In comparison with other Laramide-age anatectic granites in SE Arizona, those exposed in the Pinaleño Mountains are temporally similar but present compositional and isotopic differences that reflect melting and assimilation of different lithologies, producing distinct mineralogical and isotopic characteristics. The results suggest that crustal melting during this interval was not limited to metasedimentary protoliths and may have affected large portions of the deep crust. The early Paleogene Relleno suite in the Pinaleño Mountains strengthens the relationship between crustal melting and regions of thickened crust associated with the Sevier and Laramide orogenies. 
    more » « less
  4. Troll, Valentin (Ed.)
    Continental alkaline magmatism produces a wide variety of igneous rock types because of varying degrees of partial melting of heterogenous mantle sources, fractional crystallization, and magma contamination during transit through the continental crust. The Mount Overlord Volcanic Field (MOVF) is a continental alkaline volcanic province in northern Victoria Land, Antarctica. Mount Overlord and the associated vents that make up the volcanic field are some of the least-explored volcanic rocks in the western Ross Sea. The MOVF sits within the Transantarctic Mountains, which form the rift shoulder of the extensive West Antarctic Rift System. The compositions of volcanic rocks in the MOVF range widely from basanite to evolved trachyte and comendite with a suite of intermediate rock types. Here we present 40Ar/39Ar ages, petrography, and whole-rock and mineral geochemistry to establish the temporal and magmatic evolution of the magmatic system. Volcanic activity occurred from 21.2 to 6.9 Ma, making it one of the longest records of volcanism in the western Ross Sea area. Mount Rittmann, an active volcano that is part of the MOVF, is not discussed here but extends the timing of volcanism of the MOVF into the Holocene. At Mount Overlord and surrounding areas, there were eruptions of lava flows, domes, and pyroclastic rocks. Localized deposits of hyaloclastites formed by magma-ice interactions provide an insight into former ice levels. Geochemically the MOVF shows a single magma differentiation trend except for Navigator Nunatak lavas which have a potassic affinity rarely seen in northern Victoria Land. Partial melting of an amphibole-bearing mantle lithology at or near the base of the continental lithospheric mantle (CLM) was the main source of the parental basaltic magmas. Polybaric crystal fractionation of the primary basaltic magmas mainly occurred at lower crustal depths and involved fractionation of clinopyroxene, olivine, kaersutite, feldspars, biotite, Fe–Ti oxides, apatite, and sodalite. Crustal assimilation of c. 10% granite harbor igneous complex granitoids was important in the evolution of intermediate composition magmas. Trachyte, phonolite, and comendite magmas stagnated and evolved at shallow crustal depths (c. <8 km). Over 95% crystal fractionation was required to generate the comendites. Extraction of the comendite melt from a felsic crystal mush was an important process. The potassic Navigator Nunatak magma required partial melting of phlogopite-bearing metasomatized CLM. The metasomes had ‘HIMU-like’ or FOZO isotopic compositions that ultimately originated from recycling of materials in the mantle. The MOVF displays a stronger affinity toward FOZO than other northern Victoria Land basaltic rocks. This suggests that the interaction between parental melt and juvenile CLM was limited, which is similar to volcanic rocks from the oceanic Adare Basin seamounts. Our result emphasizes the critical importance of a thick CLM for the genesis of diverse alkaline magma compositions in a continental rift system. 
    more » « less
  5. Abstract We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, an ~500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada Batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate (1) the timing and rates of Mesozoic arc construction, (2) mechanisms of sediment incorporation into the lower crust, and (3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use U-Pb detrital zircon geochronology of four quartzites and one metatexite migmatite to investigate the origin of the lower-crustal Cucamonga metasedimentary sequence, and U-Pb zircon petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga metasedimentary sequence shares broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a late Paleozoic to early Mesozoic forearc or intra-arc basin marginal to the Southern California Batholith. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750 °C), metamorphic events at ca. 124 Ma and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 Ma to 75 Ma and culminated in a magmatic surge from ca. 90 Ma to 75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by the emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. 
    more » « less