We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, a ~ 500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate: 1) the timing and rates of Mesozoic arc construction, 2) mechanisms of sediment incorporation into the lower crust, and 3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use detrital zircon geochronology of 4 quartzites and paragneisses to investigate the origin of the lower-crustal Cucamonga paragneiss sequence, and U-Pb petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga paragneisses share broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a Late Paleozoic to Early Mesozoic forearc or intra-arc basin. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750°C) migmatization events at ca. 124 and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 to 75 Ma and culminated in a magmatic surge from ca. 90–75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. Our observations demonstrate that tectonic incorporation of sediments into the lower crust led to structural, compositional and rheological changes in the architecture of the arc including vertical thickening. These structural changes created weak zones that preferentially focused deformation and promoted present-day reactivation along the Cucamonga thrust fault.
more »
« less
This content will become publicly available on August 23, 2025
Tectonic and magmatic construction of lower crust in the Southern California Batholith
Abstract We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, an ~500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada Batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate (1) the timing and rates of Mesozoic arc construction, (2) mechanisms of sediment incorporation into the lower crust, and (3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use U-Pb detrital zircon geochronology of four quartzites and one metatexite migmatite to investigate the origin of the lower-crustal Cucamonga metasedimentary sequence, and U-Pb zircon petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga metasedimentary sequence shares broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a late Paleozoic to early Mesozoic forearc or intra-arc basin marginal to the Southern California Batholith. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750 °C), metamorphic events at ca. 124 Ma and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 Ma to 75 Ma and culminated in a magmatic surge from ca. 90 Ma to 75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by the emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event.
more »
« less
- PAR ID:
- 10583832
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geological Society of America Bulletin
- Volume:
- 137
- Issue:
- 1-2
- ISSN:
- 0016-7606
- Page Range / eLocation ID:
- 740 to 768
- Subject(s) / Keyword(s):
- Southern California batholith, Magmatic arc construction, lower continental crust
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We explore the growth of lower-continental crust by examining the root of the Southern California Batholith, a ~ 500-km-long, paleo-arc segment of the Mesozoic California arc that lies between the southern Sierra Nevada batholith and northern Peninsular Ranges Batholith. We focus on the Cucamonga and San Antonio terranes located in the eastern San Gabriel Mountains where the deep root of the Mesozoic arc is exhumed by the Quaternary Cucamonga thrust fault. This lower- to mid-crustal cross section of the arc allows us to investigate: 1) the timing and rates of Mesozoic arc construction, 2) mechanisms of sediment incorporation into the lower crust, and 3) the interplay between mantle input and crustal recycling during arc magmatic surges. We use detrital zircon geochronology of 4 quartzites and paragneisses to investigate the origin of the lower-crustal Cucamonga paragneiss sequence, and U-Pb petrochronology of 26 orthogneisses to establish the timing of arc magmatism and granulite-facies metamorphism. We find that the Cucamonga paragneisses share broad similarities to Sur Series metasedimentary rocks in the Salinia terrane, suggesting that both were deposited in a Late Paleozoic to Early Mesozoic forearc or intra-arc basin. This basin was progressively underthrust beneath the arc during the Middle Jurassic to Late Cretaceous and was metamorphosed during two high-grade (>750°C) migmatization events at ca. 124 and 89–75 Ma. These metamorphic events were associated with 100 m.y. of arc magmatism that lasted from 175 to 75 Ma and culminated in a magmatic surge from ca. 90–75 Ma. Field observations and petrochronology analyses indicate that partial melting of the underthrust Cucamonga metasedimentary rocks was triggered by emplacement of voluminous, mid-crustal tonalites and granodiorites. Partial melting of the metasedimentary rocks played a subsidiary role relative to mantle input in driving the Late Cretaceous magmatic flare-up event. Our observations demonstrate that tectonic incorporation of sediments into the lower crust led to structural, compositional and rheological changes in the architecture of the arc including vertical thickening. These structural changes created weak zones that preferentially focused deformation and promoted present-day reactivation along the Cucamonga thrust fault.more » « less
-
The Southern California batholith contains a geologic record that can help clarify the timing of events that occurred during the Late Cretaceous (100-65 Ma) along the western margin of the North American Cordillera. The subduction of the oceanic conjugate Shatsky plateau beneath North America is postulated to have ended active magmatism in the arc at 88-70 Ma; however, the timing of this event is poorly constrained in Southern California. We use U-Pb laser ablation zircon petrochronology to document the timing and conditions of magmatism and metamorphism in the lower crust of the Cretaceous arc. We focus on the Cucamonga terrane in a part of the Southern California batholith located northeast of Los Angeles in the southeastern San Gabriel Mountains. These rocks contain exhumed lower crustal (7-9 kbar) rocks predominantly composed of granulite-facies metasedimentary rocks, migmatites, charnockite and dioritic to tonalitic gneiss. We report 20 new zircon dates from 11 samples, including 4 mafic biotite gneisses, 3 mylonitic tonalites, 2 charnockites, a quartzite, and a felsic pegmatite dike crosscutting granulite-facies metasedimentary rocks. New 206Pb/238U ages show that magmatism occurred in the Middle Jurassic (ca. 172-166 Ma), the Early Cretaceous (ca. 120-118 Ma), and the Late Cretaceous (88-86 Ma) at temperatures ranging from 740 to 800 oC. Granulite-facies metamorphism and partial melting of these rocks occurred during the 88-74 Ma interval at temperatures ranging from 730°C to 800oC. Our data indicate that high-temperature arc magmatism and granulite-facies metamorphism continued through the Late Cretaceous and overlapped in timing with postulated subduction of the conjugate Shatsky plateau from previous models. We speculate that termination of arc activity and cooling of the lower crust in response to plateau subduction must postdate ca. 74 Ma.more » « less
-
We present >90 new igneous and metamorphic zircon and titanite petrochronology ages from the eastern Transverse Ranges of the Southern California Batholith (SCB) to investigate magmatic and tectonic processes in the frontal arc during postulated initiation of Late Cretaceous shallow-slab subduction. Our data cover >4000 km2 in the eastern Transverse Ranges and include data from Mesozoic plutons in the Mt. Pinos, Alamo Mountain, San Gabriel Mountain blocks, and the Eastern Peninsular mylonite zone. Igneous zircon data reveal 4 discrete pulses of magmatism at 258-220 Ma, 160-142 Ma, 120-118 Ma, and 90-66 Ma. The latter pulse involved a widespread magmatic surge in the SCB and coincided with garnet-granulite to upper amphibolite-facies metamorphism and partial melting in the lower crust (Cucamonga terrane, eastern San Gabriel Mountains). In this region, metamorphic zircons in gneisses, migmatites and calc-silicates record high-temperature metamorphism from 91 to 74 Ma at 9–7 kbars and 800–730°C. The Late Cretaceous arc flare-up was temporally and spatially associated with the development of a regionally extensive oblique sinistral-reverse shear system that includes from north to south (present-day) the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. Syn-kinematic, metamorphic titanite ages in the Tumamait shear zone range from 77–74 Ma at 720–700°C, titanites in the Black Belt mylonite zone give an age of 83 Ma, and those in the eastern Peninsular Ranges mylonite zone give ages of 89–86 Ma at 680–670°C. These data suggest a progressive northward younging of ductile shearing at amphibolite- to upper-amphibolite-facies conditions from 88 to 74 Ma, which overlaps with the timing of the Late Cretaceous arc flare-up event. Collectively, these data indicate that arc magmatism, high-temperature metamorphism, and intra-arc contraction were active in the SCB throughout the Late Cretaceous. These observations appear to contradict existing models for the termination of magmatism and refrigeration of the arc due to underthrusting of the conjugate Shatsky rise starting at ca. 88 Ma. We suggest that shallow-slab subduction likely postdates ca. 74 Ma when high-temperature metamorphism ceased in the SCB.more » « less
-
Structural analyses combined with U‐Pb zircon petrochronology show the influence of arc magmatism on the evolution of two transpressional shear zones in the deep root of the Late Cretaceous Southern California batholith. The mid-crustal Black Belt and lower-crustal Cucamonga shear zones (eastern San Gabriel Mountains) formed at ~84 Ma shortly after a large mass of tonalite and granodiorite intruded the lower crust. Both shear zones were active until at least ~74 Ma and probably until 72-70 Ma. In the mid-crustal shear zone, rheological contrasts between mingling magmas localized deformation at dike margins. The deformation began as hypersolidus flow in partially crystallized dikes and then transitioned to deformation below the solidus when alternations between viscous creep and brittle faulting produced interlayered pseudotachylyte, cataclasite, and mylonite. As the dikes solidified, strain hardening drove shear zone growth and created thin (10-30 m) high-strain zones and faults that are widely spaced across ~1 km. In contrast, the lower-crustal Cucamonga shear zone was magma-starved, lacks the variety of shear zone fabrics exhibited by its mid-crustal counterpart, and formed by the reactivation of a pre-existing fabric that records pure reverse displacements at 124-93 Ma. The two shear zones created a partitioned style of intra-arc transpression where sinistral-reverse (mostly arc-parallel with some arc-oblique) displacements were accommodated on moderately dipping faults and shear zones and arc-normal shortening was accommodated by coeval folds. This study shows how a magmatic surge influenced the architecture and style of Late Cretaceous transpression in the Southern California batholith, including the evolution of high-strain zones that record alternating episodes of brittle, ductile, and hypersolidus deformation. The results illustrate how magmatism localizes strain on deep-crustal faults during orogenesis and oblique convergence.more » « less