skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating atomization characteristics in an electrostatic rotary bell atomizer
Electrostatic rotary bell atomizers are commonly used in several engineering applications, including the automobile industry. A high-speed rotating nozzle operating in a strong background electric field atomizes paint into charged droplets that range from a few micrometers to tens of micrometers in diameter. The atomization process directly determines the droplet size and droplet charge distributions which subsequently control the transfer efficiency and the surface finish quality. We have previously developed a tool to perform high fidelity simulations of near-bell atomization with electrohydrodynamic effects. In this work, we perform simulations employed with a droplet ancestry extraction tool to analyze previously inaccessible information and understand the physical processes driving atomization. We find that the electric field accelerates breakup processes and enhances secondary atomization. The total number of droplets, the ratio of secondary to primary droplets, and the ratio of coalescence to breakup activity are all much higher when operating in an electric field. We analyze the droplet velocity, local Weber number and charge density statistics to understand the complex physics in electrically assisted breakup. The results of the study have helped us gain insights into the physics of atomization in electrostatic rotary sprays.  more » « less
Award ID(s):
1749779
PAR ID:
10536396
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Multiphase Flow
Volume:
175
Issue:
C
ISSN:
0301-9322
Page Range / eLocation ID:
104814
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rotary Bell Atomizers (RBA) are extensively used as paint applicators in the automotive industry. Atomization of paint is achieved by a bell cup rotating at speeds of 40k-60k RPM in the presence of a background electric field. Automotive paint shops amount up to 70% of the total energy costs [Galitsky et. al., 2008], 50% of the electricity demand [Leven et. al., 2001] and up to 80% of the environmental concerns [Geffen et al., 2000] in an automobile manufacturing facility. The atomization process in an RBA affects droplet size and velocity distribution which subsequently control transfer efficiency and surface finish quality. Optimal spray parameters used in industry are often obtained from expensive trial-and-error methods. In this work, three-dimensional near-cup atomization (primary and secondary breakup) are simulated computationally using a high-fidelity volume-of-fluid transport scheme that includes an electrohydrodynamic effects. The influence of fluid properties (viscosity ratio, flow rate and charge density), nozzle rotation rate and bell potential on atomization are investigated by performing a parametric study. This cost-effective method of research aims to identify the ideal spray parameters to achieve maximum transfer efficiency. 
    more » « less
  2. Understanding the process of primary and secondary atomization in liquid jets is crucial in describing spray distribution and droplet geometry for industrial applications and is essential in the development of physics-based low-fidelity atomization models. Significant advances in numerical modelling and computational resources allows research groups to conduct detailed numerical simulations of these flows. However, the large size of the datasets produced by highfidelity simulations limit researchers’ ability to analyze them. Consequently, the process of a coherent liquid core breaking into droplets has not been analyzed in simulation results even though a complete description of the jet dynamics exists. The present work applies a droplet physics extraction technique to high-fidelity simulations to track breakup events and data associated with the local flow. The data on the atomization process is stored in a Neo4j graphical database providing an easily accessible format. Results will provide a robust, quantitative description of the process of atomization and the details on the local flow field will be useful in the development of low-fidelity atomization models. 
    more » « less
  3. This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems. 
    more » « less
  4. Many research groups are capable of performing impressive high-fidelity simulations of atomizing jets that lever- age advances to numerical methods and ever increasing computational resources. The simulations produce very large data-sets describing the flow and have the potential to advance our understanding of atomization. The challenge to making the results useful is extracting relevant physics from these large data-sets. In this work, we propose two physics extraction techniques that provide 1) the fundamental instabilities that exist on a jet’s liquid core that dictate the largest structures generated during atomization and 2) the ancestry of droplets created as the coherent liquid core breaks into droplets and ligaments which may continue to break into smaller droplets. Understanding these processes will allow for low-fidelity atomization models to be developed and tested that agree with the physics predicted by detailed simulations. 
    more » « less
  5. Abstract Formation of energetic species at the surface of aqueous microdroplets, including abundant hydroxyl radicals, oxidation products, and ionized N2and O2gas, has been previously attributed to the high electric field at the droplet surface. Here, evidence for a new mechanism for electronic excitation involving electron emission from negatively charged water droplets is shown. Droplet evaporation can lead to the emission of ions and droplet fission, but unlike positively charged droplets, negatively charged droplets can also shed charge by electron emission. With nanoelectrospray, no anions or negatively charged droplets are produced with a positive electrospray potential. In contrast, abundant O2+•and H3O+(H2O) are formed with negative electrospray. When toluene vapor is introduced with negative electrospray, abundant toluene radical cations and fragments are produced. Both O2+•and toluene radical cations are produced with pneumatic nebulization. The electrons produced from evaporating negatively charged droplets can be accelerated by an external electric field in electrospray, or by the field generated between droplets with opposite polarities produced by pneumatic nebulization. This electron emission/ionization mechanism leads to electronic excitation >10 eV, and it may explain some of the surprising chemistries that were previously attributed to the high intrinsic electric field at the surface of aqueous droplets. 
    more » « less