Abstract Spontaneous ionization/breakup of water at the surface of aqueous droplets has been reported with evidence ranging from formation of hydrogen peroxide and hydroxyl radicals, indicated by ions atm/z36 attributed to OH⋅‐H3O+or (H2O‐OH2)+⋅ as well as oxidation products of radical scavengers in mass spectra of water droplets formed by pneumatic nebulization. Here, aqueous droplets are formed both by nanoelectrospray, which produces highly charged nanodrops with initial diameters ~100 nm, and a vibrating mesh nebulizer, which produces 2–20 μm droplets that are initially less highly charged. The lifetimes of these droplets range from 10s of μs to 560 ms and the surface‐to‐volume ratios span ~100‐fold range. No ions atm/z36 are detected with pure water, nor are significant oxidation products for the two radical scavengers that were previously reported to be formed in high abundance. These and other results indicate that prior conclusions about spontaneous hydroxyl radical formation in unactivated water droplets are not supported by the evidence and that water appears to be stable at droplet surfaces over a wide range of droplet size, charge and lifetime.
more »
« less
This content will become publicly available on March 5, 2026
Electronic Excitation and High‐Energy Reactions Originate From Anionic Microdroplets Formed by Electrospray or Pneumatic Nebulization
Abstract Formation of energetic species at the surface of aqueous microdroplets, including abundant hydroxyl radicals, oxidation products, and ionized N2and O2gas, has been previously attributed to the high electric field at the droplet surface. Here, evidence for a new mechanism for electronic excitation involving electron emission from negatively charged water droplets is shown. Droplet evaporation can lead to the emission of ions and droplet fission, but unlike positively charged droplets, negatively charged droplets can also shed charge by electron emission. With nanoelectrospray, no anions or negatively charged droplets are produced with a positive electrospray potential. In contrast, abundant O2+•and H3O+(H2O) are formed with negative electrospray. When toluene vapor is introduced with negative electrospray, abundant toluene radical cations and fragments are produced. Both O2+•and toluene radical cations are produced with pneumatic nebulization. The electrons produced from evaporating negatively charged droplets can be accelerated by an external electric field in electrospray, or by the field generated between droplets with opposite polarities produced by pneumatic nebulization. This electron emission/ionization mechanism leads to electronic excitation >10 eV, and it may explain some of the surprising chemistries that were previously attributed to the high intrinsic electric field at the surface of aqueous droplets.
more »
« less
- Award ID(s):
- 2203907
- PAR ID:
- 10577655
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 19
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In charged water microdroplets, which occur in nature or in the lab upon ultrasonication or in electrospray processes, the thermodynamics for reactive chemistry can be dramatically altered relative to the bulk phase. Here, we provide a theoretical basis for the observation of accelerated chemistry by simulating water droplets of increasing charge imbalance to create redox agents such as hydroxyl and hydrogen radicals and solvated electrons. We compute the hydration enthalpy of OH−and H+that controls the electron transfer process, and the corresponding changes in vertical ionization energy and vertical electron affinity of the ions, to create OH•and H•reactive species. We find that at ~ 20 − 50% of the Rayleigh limit of droplet charge the hydration enthalpy of both OH−and H+have decreased by >50 kcal/mol such that electron transfer becomes thermodynamically favorable, in correspondence with the more favorable vertical electron affinity of H+and the lowered vertical ionization energy of OH−. We provide scaling arguments that show that the nanoscale calculations and conclusions extend to the experimental microdroplet length scale. The relevance of the droplet charge for chemical reactivity is illustrated for the formation of H2O2, and has clear implications for other redox reactions observed to occur with enhanced rates in microdroplets.more » « less
-
Interactions at the interface between atmospheric pressure plasmas and liquids are being investigated to address applications ranging from nanoparticle synthesis to decontamination and fertilizer production. Many of these applications involve activation of droplets wherein the droplet is fully immersed in the plasma and synergistically interacts with the plasma. To better understand these interactions, two-dimensional modeling of radio frequency (RF) glow discharges at atmospheric pressure operated in He with an embedded lossy dielectric droplet (tens of microns in size) was performed. The properties of the sheath that forms around the droplet were investigated over the RF cycle. The electric field in the bulk plasma polarizes the dielectric droplet while the electron drift in the external electric field is shadowed by the droplet. The interaction between the bulk and sheath electric fields produces a maximum in E/N (electric field/gas number density) at the equator on one side of the droplet where the bulk and sheath fields are aligned in the same direction and a minimum along the opposite equator. Due to resistive heating, the electron temperature T e is maximum 45° above and below the equator of the droplet where power deposition per electron is the highest. Although the droplet is, on the average, negatively charged, the charge density on the droplet is positive on the poles and negative on the equator, as the electron motion is primarily due to diffusion at the poles but due to drift at the equator.more » « less
-
Abstract We report on the largest open‐shell graphenic bilayer and also the first example of triply negatively charged radical π‐dimer. Upon three‐electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2(Ar=2,6‐dimethylphenyl) (12) was transformed to a triply negatively charged species123.−, which has been characterized by single‐crystal X‐ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID).123.−features a 96‐center‐3‐electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π‐fused rings with 96 conjugatedsp2carbon atoms. Spin frustration is observed with the frustration parameterf>31.8 at low temperatures in123.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.more » « less
-
Abstract Plasmas in contact with liquids can degrade organic molecules in a solution, as reactive oxygen and nitrogen species produced in the plasma solvate into the liquid. Immersing small droplets (tens of microns in diameter) in the plasma can more rapidly activate the liquid compared to treating a large volume of liquid with a smaller surface-to-volume ratio. The interactions between a radio frequency glow discharge sustained in He/H2O and a water droplet containing formate (HCOO−aq) immersed in and flowing through the plasma were modeled using a zero-dimensional global plasma chemistry model to investigate these activation processes. HCOO−aqinteracts with OHaq, which is produced from the solvation of OH from the gas phase. The resulting HCOO−aqconcentrations were benchmarked with previously reported experimental measurements. The diameter of the droplet, initial HCOO−aqconcentration, and gas flow rate affect only the HCOO−aqconcentration and OHaqdensity, leaving the OH density in the gas phase unaffected. Power deposition and gas mixture (e.g. percentage of H2O) change both the gas and liquid phase chemistry. A general trend was observed: during the first portion of droplet exposure to the plasma, OHaqprimarily consumes HCOO−aq. However, O2−aq, a byproduct of HCOO−aqconsumption, consumes OHaqonce O2−aqreaches a critically large density. Using HCOO−aqas a surrogate for OHaq-sensitive contaminants, combinations of residence time, droplet diameter, water vapor density, and power will determine the optimum remediation strategy.more » « less
An official website of the United States government
