skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A quantitative comparison and validation of finite-fault models: The 2011 Tohoku-Oki earthquake
Large earthquakes rupture faults over hundreds of kilometers withinminutes. Finite-fault models elucidate these processes and provideobservational constraints for understanding earthquake physics. However,finite-fault inversions are subject to non-uniqueness and substantialuncertainties. The diverse range of published models for thewell-recorded 2011 M_w 9.0 Tohoku-Oki earthquake aptly illustrates thisissue, and details of its rupture process remain under debate. Here, wecomprehensively compare 32 finite-fault models of the Tohoku-Okiearthquake and analyze the sensitivity of three commonly-usedobservational data types (geodetic, seismic, and tsunami) to the slipfeatures identified. We first project all models to a realisticmegathrust geometry and a 1-km subfault size. At this scale, we observepoor correlation among the models, irrespective of the data type.However, model agreement improves significantly when subfault sizes areincreased, implying that their differences primarily stem fromsmall-scale features. We then forward-compute geodetic and teleseismicsynthetics and compare them with observations. We find that seismicobservations are sensitive to rupture propagation, such as thepeak-slip-rise time. However, neither teleseismic nor geodeticobservations are sensitive to spatial slip features smaller than 64 km.In distinction, the synthesized seafloor deformation of all modelsexhibits poor correlation, indicating sensitivity to small-scale slipfeatures. Our findings suggest that fine-scale slip features cannot beunambiguously resolved by remote or sparse observations, such as thethree data types tested in this study. However, better resolution maybecome achievable from uniformly gridded dense offshore instrumentation.  more » « less
Award ID(s):
2311206
PAR ID:
10536422
Author(s) / Creator(s):
; ;
Publisher / Repository:
Authorea, Inc.
Date Published:
Format(s):
Medium: X
Institution:
Authorea, Inc.
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Large earthquakes rupture faults over hundreds of kilometers within minutes. Finite‐fault models image these processes and provide observational constraints for understanding earthquake physics. However, finite‐fault inversions are subject to non‐uniqueness and uncertainties. The diverse range of published models for the well‐recorded 2011 9.0 Tohoku‐Oki earthquake illustrates this challenge, and its rupture process remains under debate. Here, we comprehensively compare 32 published finite‐fault models of the Tohoku‐Oki earthquake. We aim to identify the most coherent slip features of the Tohoku‐Oki earthquake from these slip models and develop a new method for quantitatively analyzing their variations. We find that the models correlate poorly at 1‐km subfault size, irrespective of the data type. In contrast, model agreement improves significantly with increasing subfault sizes, consistently showing that the largest slip occurs up‐dip of the hypocenter near the trench. We use the set of models to test the sensitivity of available teleseismic, regional seismic, and geodetic observations. For the large Tohoku‐Oki earthquake, we find that the analyzed finite‐fault models are less sensitive to slip features smaller than 64 km. When we use the models to compute synthetic seafloor deformation, we observe strong variations in the synthetics, suggesting their sensitivity to small‐scale slip features. Our newly developed approach offers a quantitative framework to identify common features in distinct finite‐fault slip models and to analyze their robustness using regional and global geophysical observations for megathrust earthquakes. Our results indicate that dense offshore instrumentation is critical for resolving the rupture complexities of megathrust earthquakes. 
    more » « less
  2. The destructive 2023 moment magnitude ( M w ) 7.8-7.7 earthquake doublet ruptured multiple segments of the East Anatolian Fault system in Turkey. We integrate multi-scale seismic and space-geodetic observations with multi-fault kinematic inversions and dynamic rupture modeling to unravel the events’ complex rupture history and stress-mediated fault interactions. Our analysis reveals three sub-shear slip episodes during the initial M w 7.8 earthquake with delayed rupture initiation to the southwest. The M w 7.7 event occurred 9 hours later with larger slip and supershear rupture on its western branch. Mechanically consistent dynamic models accounting for fault interactions can explain the unexpected rupture paths, and require a heterogeneous background stress. Our results highlight the importance of combining near- and far-field observations with data-driven and physics-based models for seismic hazard assessment. 
    more » « less
  3. Previous geodetic and teleseismic observations of the 2021 Mw 7.4 Maduo earthquake imply surprising but difficult-to-constrain complexity, including rupture across multiple fault segments and supershear rupture. Here, we present an integrated analysis of multi-fault 3D dynamic rupture models, high-resolution optical correlation analysis, and joint optical-InSAR slip inversion. Our preferred model, validated by the teleseismic multi-peak moment rate release, includes unilateral eastward double-onset supershear speeds and cascading rupture dynamically triggering two adjacent fault branches. We propose that pronounced along-strike variation in fracture energy, complex fault geometries, and multi-scale variable prestress drives this event's complex rupture dynamics. We illustrate how supershear transition has signatures in modeled and observed off-fault deformation. Our study opens new avenues to combine observations and models to better understand complex earthquake dynamics, including local and potentially repeating supershear episodes across immature faults or under heterogeneous stress and strength conditions, which are potentially not unusual. 
    more » « less
  4. Abstract Previous geodetic and teleseismic observations of the 2021 7.4 Maduo earthquake imply surprising but difficult‐to‐constrain complexity, including rupture across multiple fault segments and supershear rupture. Here, we present an integrated analysis of multi‐fault 3D dynamic rupture models, high‐resolution optical correlation analysis, and joint optical‐InSAR slip inversion. Our preferred model, validated by the teleseismic multi‐peak moment rate release, includes unilateral eastward double‐onset supershear speeds and cascading rupture dynamically triggering two adjacent fault branches. We propose that pronounced along‐strike variation in fracture energy, complex fault geometries, and multi‐scale variable prestress drives this event's complex rupture dynamics. We illustrate how supershear transition has signatures in modeled and observed off‐fault deformation. Our study opens new avenues to combine observations and models to better understand complex earthquake dynamics, including local and potentially repeating supershear episodes across immature faults or under heterogeneous stress and strength conditions, which are potentially not unusual. 
    more » « less
  5. Abstract The 2023 Turkey earthquake sequence involved unexpected ruptures across numerous fault segments. We present 3D dynamic rupture simulations to illuminate the complex dynamics of the earthquake doublet. Our models are constrained by observations available within days of the sequence and deliver timely, mechanically consistent explanations of the unforeseen rupture paths, diverse rupture speeds, multiple slip episodes, heterogeneous fault offsets, locally strong shaking, and fault system interactions. Our simulations link both earthquakes, matching geodetic and seismic observations and reconciling regional seismotectonics, rupture dynamics, and ground motions of a fault system represented by 10 curved dipping segments and embedded in a heterogeneous stress field. The Mw 7.8 earthquake features delayed backward branching from a steeply branching splay fault, not requiring supershear speeds. The asymmetrical dynamics of the distinct, bilateral Mw 7.7 earthquake are explained by heterogeneous fault strength, prestress orientation, fracture energy, and static stress changes from the previous earthquake. Our models explain the northward deviation of its eastern rupture and the minimal slip observed on the Sürgü fault. 3D dynamic rupture scenarios can elucidate unexpected observations shortly after major earthquakes, providing timely insights for data-driven analysis and hazard assessment toward a comprehensive, physically consistent understanding of the mechanics of multifault systems. 
    more » « less