Megathrust geometric properties exhibit some of the strongest correlations with maximum earthquake magnitude in global surveys of large subduction zone earthquakes, but the mechanisms through which fault geometry influences subduction earthquake cycle dynamics remain unresolved. Here, we develop 39 models of sequences of earthquakes and aseismic slip (SEAS) on variably‐dipping planar and variably‐curved nonplanar megathrusts using the volumetric, high‐order accurate code
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract tandem to account for fault curvature. We vary the dip, downdip curvature and width of the seismogenic zone to examine how slab geometry mechanically influences megathrust seismic cycles, including the size, variability, and interevent timing of earthquakes. Dip and curvature control characteristic slip styles primarily through their influence on seismogenic zone width: wider seismogenic zones allow shallowly‐dipping megathrusts to host larger earthquakes than steeply‐dipping ones. Under elevated pore pressure and less strongly velocity‐weakening friction, all modeled fault geometries host uniform periodic ruptures. In contrast, shallowly‐dipping and sharply‐curved megathrusts host multi‐period supercycles of slow‐to‐fast, small‐to‐large slip events under higher effective stresses and more strongly velocity‐weakening friction. We discuss how subduction zones' maximum earthquake magnitudes may be primarily controlled by the dip and dimensions of the seismogenic zone, while second‐order effects from structurally‐derived mechanical heterogeneity modulate the recurrence frequency and timing of these events. Our results suggest that enhanced co‐ and interseismic strength and stress variability along the megathrust, such as induced near areas of high or heterogeneous fault curvature, limits how frequently large ruptures occur and may explain curved faults' tendency to host more frequent, smaller earthquakes than flat faults.Free, publicly-accessible full text available August 1, 2025 -
Abstract Slow slip events (SSEs) have been observed in spatial and temporal proximity to megathrust earthquakes in various subduction zones, including the 2014
M w7.3 Guerrero, Mexico earthquake which was preceded by aM w7.6 SSE. However, the underlying physics connecting SSEs to earthquakes remains elusive. Here, we link 3D slow‐slip cycle models with dynamic rupture simulations across the geometrically complex flat‐slab Cocos plate boundary. Our physics‐based models reproduce key regional geodetic and teleseismic fault slip observations on timescales from decades to seconds. We find that accelerating SSE fronts transiently increase shear stress at the down‐dip end of the seismogenic zone, modulated by the complex geometry beneath the Guerrero segment. The shear stresses cast by the migrating fronts of the 2014M w7.6 SSE are significantly larger than those during the three previous episodic SSEs that occurred along the same portion of the megathrust. We show that the SSE transient stresses are large enough to nucleate earthquake dynamic rupture and affect rupture dynamics. However, additional frictional asperities in the seismogenic part of the megathrust are required to explain the observed complexities in the coseismic energy release and static surface displacements of the Guerrero earthquake. We conclude that it is crucial to jointly analyze the long‐ and short‐term interactions and complexities of SSEs and megathrust earthquakes across several (a)seismic cycles accounting for megathrust geometry. Our study has important implications for identifying earthquake precursors and understanding the link between transient and sudden megathrust faulting processes. -
Earthquakes vary in size over many orders of magnitude, often rupturing in complex multifault and multievent sequences. Despite the large number of observed earthquakes, the scaling of the earthquake energy budget remains enigmatic. We propose that fundamentally different fracture processes govern small and large earthquakes. We combined seismological observations with physics-based earthquake models, finding that both dynamic weakening and restrengthening effects are non-negligible in the energy budget of small earthquakes. We established a linear scaling relationship between fracture energy and fault size and a break in scaling with slip. We applied this scaling using supercomputing and unveiled large dynamic rupture earthquake cascades involving >700 multiscale fractures within a fault damage zone. We provide a simple explanation for seismicity across all scales with implications for comprehending earthquake genesis and multifault rupture cascades.
Free, publicly-accessible full text available July 26, 2025 -
Understanding the dynamics of microearthquakes is a timely challengewith the potential to address current paradoxes in earthquake mechanics,and to better understand earthquake ruptures induced by fluid injection.We perform fully 3D dynamic rupture simulations caused by fluidinjection on a target fault for FEAR experiments generating Mw ≤ 1earthquakes. We investigate the dynamics of rupture propagation withspatially variable stress drop caused by pore pressure changes andassuming different constitutive parameters. We show that the spontaneousarrest of propagating ruptures is possible by assuming a high faultstrength parameter S, that is, a high ratio between strength excess anddynamic stress drop. In faults with high S values (low rupturingpotential), even minor variations in Dc (from 0.45 to 0.6 mm) have asubstantial effect on the rupture propagation and the ultimateearthquake size. Our results show that modest spatial variations ofdynamic stress drop determine the rupture mode, distinguishingself-arresting from run-away ruptures. Our results suggest that severalcharacteristics inferred for accelerating dynamic ruptures differ fromthose observed during rupture deceleration of a self-arrestingearthquake. During deceleration, a decrease of peak slip velocity isassociated with a nearly constant cohesive zone size. Moreover, theresidual slip velocity value (asymptotic value for a crack-like rupture)decreases to nearly zero. This means that an initially crack-likerupture becomes a pulse-like rupture during spontaneous arrest. Insummary, our findings highlight the complex dynamics of smallearthquakes, which are partially contrasting with established crack-likemodels of earthquake rupture.
Free, publicly-accessible full text available June 24, 2025 -
Previous geodetic and teleseismic observations of the 2021 Mw 7.4 Maduo earthquake imply surprising but difficult-to-constrain complexity, including rupture across multiple fault segments and supershear rupture. Here, we present an integrated analysis of multi-fault 3D dynamic rupture models, high-resolution optical correlation analysis, and joint optical-InSAR slip inversion. Our preferred model, validated by the teleseismic multi-peak moment rate release, includes unilateral eastward double-onset supershear speeds and cascading rupture dynamically triggering two adjacent fault branches. We propose that pronounced along-strike variation in fracture energy, complex fault geometries, and multi-scale variable prestress drives this event's complex rupture dynamics. We illustrate how supershear transition has signatures in modeled and observed off-fault deformation. Our study opens new avenues to combine observations and models to better understand complex earthquake dynamics, including local and potentially repeating supershear episodes across immature faults or under heterogeneous stress and strength conditions, which are potentially not unusual.
Free, publicly-accessible full text available May 10, 2025 -
The Mediterranean Hellenic Arc subduction zone (HASZ) has generatedseveral Mw>=8 earthquakes and tsunamis.Seismic-probabilistic tsunami hazard assessment typically utilizesuniform or stochastic earthquake models, which may not represent dynamicrupture and tsunami generation complexity. We present an ensemble of ten3D dynamic rupture earthquake scenarios for the HASZ, utilizing arealistic slab geometry. Our simplest models use uniform along-arcpre-stresses or a single circular initial stress asperity. We thenintroduce progressively more complex models varying initial shear stressalong-arc, multiple asperities based on scale-dependent critical slipweakening distance, and a most complex model blending all aforementionedheterogeneities. Thereby, regional initial conditions are constrainedwithout relying on detailed geodetic locking models. Varying hypocenterlocations in the simplest, homogeneous model leads to different rupturespeeds and moment magnitudes. We observe dynamic fault slip penetratingthe shallow slip-strengthening region and affecting seafloor uplift.Off-fault plastic deformation can double vertical seafloor uplift. Asingle-asperity model generates a Mw~8 scenarioresembling the 1303 Crete earthquake. Using along-strike varying initialstresses results in Mw~8.0-8.5 dynamic rupture scenarioswith diverse slip rates and uplift patterns. The model with the mostheterogeneous initial conditions yields a Mw~7.5scenario. Dynamic rupture complexity in prestress and fracture energytends to lower earthquake magnitude but enhances tsunamigenicdisplacements. Our results offer insights into the dynamics of potentiallarge Hellenic Arc megathrust earthquakes and may inform futurephysics-based joint seismic and tsunami hazard assessments.
Free, publicly-accessible full text available May 2, 2025 -
Several regularly recurring moderate-size earthquakes motivated dense instrumentation of the Parkfield section of the San Andreas fault, providing an invaluable near-fault observatory. We present a seismo-geodetic dynamic inversion of the 2004 Parkfield earthquake, which illuminates the interlinked complexity of faulting across time scales. Using fast-velocity-weakening rate-and-state friction, we jointly model 3D coseismic dynamic rupture and the 90-day evolution of postseismic slip. We utilize a parallel tempering Markov chain Monte Carlo approach to solve this non-linear high-dimensional inverse problem, constraining spatially varying prestress and fault friction parameters by 30 strong motion and 12 GPS stations. From visiting >2 million models, we discern complex coseismic rupture dynamics that transition from a strongly radiating pulse-like phase to a mildly radiating crack-like phase. Both coseismic phases are separated by a shallow strength barrier that nearly arrests rupture and leads to a gap in the afterslip. Coseismic rupture termination involves distinct arrest mechanisms that imprint on afterslip kinematics. A backward propagating afterslip front may drive delayed aftershock activity above the hypocenter. Analysis of the 10,500 best-fitting models uncovers local correlations between prestress levels and the reference friction coefficient, alongside an anticorrelation between prestress and rate-state parameters b−a. We find that a complex, fault-local interplay of dynamic parameters determines the nucleation, propagation, and arrest of both, co- and postseismic faulting. This study demonstrates the potential of inverse physics-based modeling to reveal novel insights and detailed characterizations of well-recorded earthquakes.
Free, publicly-accessible full text available April 29, 2025 -
The January 1st, 2024, moment magnitude (Mw) 7.5 Noto Peninsula earthquake ruptured in complex ways, challenging timely analysis of the tsunami generation. We present rapid and accurate tsunami models informed by a 6-subevent centroid moment tensor (CMT) model that we obtain by inverting teleseismic and strong motion data and validation against geodetic observations. We identify two distinct bilateral rupture episodes, including six subevents and a re-nucleation episode at its hypocenter 20 seconds after its initiation, likely aided by fault weakening. We construct a complex uplift model that aligns with known fault system geometries and is critical in modeling the observed tsunami. Our tsunami simulation can explain wave amplitude, timing, and polarity of the leading wave, which are crucial for tsunami early warning. Analyzing a 2000 multi-CMT solution ensemble and comparing to alternative rapid source models, we highlight the importance of incorporating complex source effects for realistic tsunami simulations.
Free, publicly-accessible full text available April 16, 2025 -
Tsunami wave observations far from the coast remain challenging due tothe logistics and cost of deploying and operating offshoreinstrumentation on a long-term basis with sufficient spatial coverageand density. Distributed Acoustic Sensing (DAS) on submarine fiber opticcables now enables real-time seafloor strain observations over distancesexceeding 100 km at a relatively low cost. Here, we evaluate thepotential contribution of DAS to tsunami warning by assessingtheoretically the sensitivity required by a DAS instrument to recordtsunami waves.
Our analysis includes signals due to two effects induced by thehydrostatic pressure perturbations arising from tsunami waves: thePoisson’s effect of the submarine cable and the compliance effect of theseafloor. It also includes the effect of seafloor shear stresses andtemperature transients induced by the horizontal fluid flow associatedwith tsunami waves. The analysis is supported by fully coupled 3-Dphysics-based simulations of earthquake rupture, seismo-acoustic wavesand tsunami wave propagation. The strains from seismo-acoustic waves andstatic deformation near the earthquake source are orders of magnitudelarger than the tsunami strain signal. We illustrate a data processingprocedure to discern the tsunami signal. With enhanced low-frequencysensitivity on DAS interrogators (strain sensitivity ≈2×10 at mHz frequencies), we find that, on seafloorcables located above or near the earthquake source area, tsunamis areexpected to be observable with a sufficient signal-to-noise ratio withina few minutes of the earthquake onset. These encouraging results pavethe way towards faster tsunami warning enabled by seafloor DAS.
Free, publicly-accessible full text available March 15, 2025 -
Large earthquakes rupture faults over hundreds of kilometers withinminutes. Finite-fault models elucidate these processes and provideobservational constraints for understanding earthquake physics. However,finite-fault inversions are subject to non-uniqueness and substantialuncertainties. The diverse range of published models for thewell-recorded 2011 M_w 9.0 Tohoku-Oki earthquake aptly illustrates thisissue, and details of its rupture process remain under debate. Here, wecomprehensively compare 32 finite-fault models of the Tohoku-Okiearthquake and analyze the sensitivity of three commonly-usedobservational data types (geodetic, seismic, and tsunami) to the slipfeatures identified. We first project all models to a realisticmegathrust geometry and a 1-km subfault size. At this scale, we observepoor correlation among the models, irrespective of the data type.However, model agreement improves significantly when subfault sizes areincreased, implying that their differences primarily stem fromsmall-scale features. We then forward-compute geodetic and teleseismicsynthetics and compare them with observations. We find that seismicobservations are sensitive to rupture propagation, such as thepeak-slip-rise time. However, neither teleseismic nor geodeticobservations are sensitive to spatial slip features smaller than 64 km.In distinction, the synthesized seafloor deformation of all modelsexhibits poor correlation, indicating sensitivity to small-scale slipfeatures. Our findings suggest that fine-scale slip features cannot beunambiguously resolved by remote or sparse observations, such as thethree data types tested in this study. However, better resolution maybecome achievable from uniformly gridded dense offshore instrumentation.