Abstract The increasing prevalence of wearable devices enables low-cost, long-term collection of health relevant data such as heart rate, exercise, and sleep signals. Currently these data are used to monitor short term changes with limited interpretation of their relevance to health. These data provide an untapped resource to monitor daily and long-term activity patterns. Changes and trends identified from such data can provide insights and guidance to the management of many chronic conditions that change over time. In this study we conducted a machine learning based analysis of longitudinal heart rate data collected over multiple years from Fitbit devices. We built a multi-resolutional pipeline for time series analysis, using model-free clustering methods inspired by statistical conformal prediction framework. With this method, we were able to detect health relevant events, their interesting patterns (e.g., daily routines, seasonal differences, and anomalies), and correlations to acute and chronic changes in health conditions. We present the results, lessons, and insights learned, and how to address the challenge of lack of labels. The study confirms the value of long-term heart rate data for health monitoring and surveillance, as complementary to extensive yet intermittent examinations by health care providers.
more »
« less
HeartInsightify: Interpreting Longitudinal Heart Rate Data for Health Insights through Conformal Clustering
Heart rate, a commonly accessible health data from most wearables, carries rich information of a person’s well-being, yet remains of limited deep health applications, due to the lack of groundtruth of health events and their impact on heart rate patterns. Specifically, standard health analytics usually are designed based on well-modeled health conditions thus known data patterns and rich training data. To bridge the gap, we propose HeartInsightify, an exploratory framework that facilitates the process of deriving health-relevant measurable indicators from longitudinal heart rate data, without any of the above knowledge. HeartInsightify focuses on comparative and qualitative study, using model-free statistical methods such as conformal prediction, to study similarities, perform clustering and detect outliers, and build multi-resolutional data summaries, allowing human experts to efficiently examine and verify their health relevance. We conduct extensive experiments to evaluate HeartInsightify using individuals’ free-living heart rate data collected through Fitbit over 6 years. We illustrate the process of analyzing heart rate data for its health relevance and demonstrate the effectiveness of HeartInsightify. We envision that HeartInsightify lays the groundwork for personalized health analytics with continuous monitoring data from wearables.
more »
« less
- Award ID(s):
- 1951880
- PAR ID:
- 10536446
- Publisher / Repository:
- IEEE International Conference on Bioinformatics and Biomedicine
- Date Published:
- Format(s):
- Medium: X
- Location:
- Istanbul, Turkey
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundThe occupational burnout epidemic is a growing issue, and in the United States, up to 60% of medical students, residents, physicians, and registered nurses experience symptoms. Wearable technologies may provide an opportunity to predict the onset of burnout and other forms of distress using physiological markers. ObjectiveThis study aims to identify physiological biomarkers of burnout, and establish what gaps are currently present in the use of wearable technologies for burnout prediction among health care professionals (HCPs). MethodsA comprehensive search of several databases was performed on June 7, 2022. No date limits were set for the search. The databases were Ovid: MEDLINE(R), Embase, Healthstar, APA PsycInfo, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Web of Science Core Collection via Clarivate Analytics, Scopus via Elsevier, EBSCOhost: Academic Search Premier, CINAHL with Full Text, and Business Source Premier. Studies observing anxiety, burnout, stress, and depression using a wearable device worn by an HCP were included, with HCP defined as medical students, residents, physicians, and nurses. Bias was assessed using the Newcastle Ottawa Quality Assessment Form for Cohort Studies. ResultsThe initial search yielded 505 papers, from which 10 (1.95%) studies were included in this review. The majority (n=9) used wrist-worn biosensors and described observational cohort studies (n=8), with a low risk of bias. While no physiological measures were reliably associated with burnout or anxiety, step count and time in bed were associated with depressive symptoms, and heart rate and heart rate variability were associated with acute stress. Studies were limited with long-term observations (eg, ≥12 months) and large sample sizes, with limited integration of wearable data with system-level information (eg, acuity) to predict burnout. Reporting standards were also insufficient, particularly in device adherence and sampling frequency used for physiological measurements. ConclusionsWith wearables offering promise for digital health assessments of human functioning, it is possible to see wearables as a frontier for predicting burnout. Future digital health studies exploring the utility of wearable technologies for burnout prediction should address the limitations of data standardization and strategies to improve adherence and inclusivity in study participation.more » « less
-
Recent advancements in sensors, device manufacturing, and big data technologies have enabled the design and manufacturing of smart wearables for a wide array of applications in healthcare. These devices can be used to remotely monitor and diagnose various diseases and aid in the rehabilitation of patients. Smart wearables are an unobtrusive and affordable alternative to costly and time-consuming health care efforts such as hospitalization and late diagnosis. Developments in micro- and nanotechnologies have led to the miniaturization of sensors, hybrid 3D printing of flexible plastics, embedded electronics, and intelligent fabrics, as well as wireless communication mediums that permit the processing, storage, and communication of data between patients and healthcare facilities. Due to these complex component architectures that comprise smart wearables, manufacturers have faced a number of problems, including minimum sensor configuration, data security, battery life, appropriate user interfaces, user acceptance, proper diagnosis, and many more. There has been a significant increase in interest from both the academic and industrial communities in research and innovation related to smart wearables. However, since smart wearables integrate several different aspects such as design, manufacturing, and analytics, the existing literature is quite widespread, making it less accessible for researchers and practitioners. The purpose of this study is to narrow this gap by providing a state-of-the-art review of the extant design, manufacturing, and analytics literature on smart wearables-all in one place- thereby facilitating future work in this rapidly growing field of research and application. Lastly, it also provides an in-depth discussion on two very important challenges facing the smart wearable devices, which include barriers to user adoption and the manufacturing technologies of the wearable devices.more » « less
-
The COVID-19 pandemic has changed the lives of many people around the world. Based on the available data and published reports, most people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. Considering that a substantial portion of them will progress to a severe disease requiring hospitalization and medical management, including respiratory and circulatory support in the form of supplemental oxygen therapy, mechanical ventilation, vasopressors, etc. The continuous monitoring of patient conditions at home for patients with COVID-19 will allow early determination of disease severity and medical intervention to reduce morbidity and mortality. In addition, this will allow early and safe hospital discharge and free hospital beds for patients who are in need of admission. In this review, we focus on the recent developments in next-generation wearable sensors capable of continuous monitoring of disease symptoms, particularly those associated with COVID-19. These include wearable non/minimally invasive biophysical (temperature, respiratory rate, oxygen saturation, heart rate, and heart rate variability) and biochemical (cytokines, cortisol, and electrolytes) sensors, sensor data analytics, and machine learning-enabled early detection and medical intervention techniques. Together, we aim to inspire the future development of wearable sensors integrated with data analytics, which serve as a foundation for disease diagnostics, health monitoring and predictions, and medical interventions.more » « less
-
Pani, Danilo (Ed.)The interplay between circadian rhythms, time awake, and mood remains poorly understood in the real-world. Individuals in high-stress occupations with irregular schedules or nighttime shifts are particularly vulnerable to depression and other mood disorders. Advances in wearable technology have provided the opportunity to study these interactions outside of a controlled laboratory environment. Here, we examine the effects of circadian rhythms and time awake on mood in first-year physicians using wearables. Continuous heart rate, step count, sleep data, and daily mood scores were collected from 2,602 medical interns across 168,311 days of Fitbit data. Circadian time and time awake were extracted from minute-by-minute wearable heart rate and motion measurements. Linear mixed modeling determined the relationship between mood, circadian rhythm, and time awake. In this cohort, mood was modulated by circadian timekeeping (p<0.001). Furthermore, we show that increasing time awake both deteriorates mood (p<0.001) and amplifies mood’s circadian rhythm nonlinearly. These findings demonstrate the contributions of both circadian rhythms and sleep deprivation to underlying mood and show how these factors can be studied in real-world settings using Fitbits. They underscore the promising opportunity to harness wearables in deploying chronotherapies for psychiatric illness.more » « less
An official website of the United States government

