AbstractElectrokinetic in-situ recovery is an alternative to conventional mining, relying on the application of an electric potential to enhance the subsurface flow of ions. Understanding the pore-scale flow and ion transport under electric potential is essential for petrophysical properties estimation and flow behavior characterization. The governing physics of electrokinetic transport is electromigration and electroosmotic flow, which depend on the electric potential gradient, mineral occurrence, domain morphology (tortuosity and porosity, grain size and distribution, etc.), and electrolyte properties (local pH distribution and lixiviant type and concentration, etc.). Herein, mineral occurrence and its associated zeta potential are investigated for EK transport. The new Ek model which is designed to solve the EK flow in complex porous media in a highly parallelizable manner includes three coupled equations: (1) Poisson equation, (2) Nernst–Planck equation, and (3) Navier–Stokes equation. These equations were solved using the lattice Boltzmann method within X-ray computed microtomography images. The proposed model is validated against COMSOL multiphysics in a two-dimensional microchannel in terms of fluid flow behavior when the electrical double layer is both resolvable and unresolvable. A more complex chalcopyrite-silica system is then obtained by micro-CT scanning to evaluate the model performance. The effects of mineral occurrence, zeta potential, and electric potential on the three-dimensional chalcopyrite-silica system were evaluated. Although the positive zeta potential of chalcopyrite can induce a flow of ferric ion counter to the direction of electromigration, the net effect is dependent on the occurrence of chalcopyrite. However, the ion flux induced by electromigration was the dominant transport mechanism, whereas advection induced by electroosmosis made a lower contribution. Overall, a pore-scale EK model is proposed for direct simulation on pore-scale images. The proposed model can be coupled with other geochemical models for full physicochemical transport simulations. Meanwhile, electrokinetic transport shows promise as a human-controllable technique because the electromigration of ions and the applied electric potential can be easily controlled externally. Graphical abstract
more »
« less
Controlled ion transport in the subsurface: A coupled advection–diffusion–electromigration system
Ion transport within saturated porous media is an intricate process in which efficient ion delivery is desired in many engineering problems. However, controlling the behavior of ion transport proves challenging, as ion transport is influenced by a variety of driving mechanisms, which requires a systematic understanding. Herein, we study a coupled advection–diffusion–electromigration system for controlled ion transport within porous media using the scaling analysis. Using the Lattice–Boltzmann–Poisson method, we establish a transport regime classification based on an Advection Diffusion Index (ADI) and a novel Electrodiffusivity Index (EDI) for a two-dimensional (2D) microchannel model under various electric potentials, pressure gradients, and concentration conditions. The resulting transport regimes can be well controlled by changing the applied electric potential, the pressure field, and the injected ions concentration. Furthermore, we conduct numerical simulations in a synthetic 2D porous media and an x-ray microcomputed tomography sandstone image to validate the prevailing transport regime. The simulation results highlight that the defined transport regime observed in our simple micromodel domain is also observed in the synthetic two- and three-dimensional domains, but the boundary between each transport regime differs depending on the variation of the pore size within a given domain. Consequently, the proposed ADI and EDI emerge as dimensionless indicators for controlled ion transport. Overall, our proof-of-concept for ion transport control in porous media is demonstrated under advection–diffusion–electromigration transport, demonstrating the richness of transport regimes that can develop and provide future research directions for subsurface engineering applications.
more »
« less
- Award ID(s):
- 2324787
- PAR ID:
- 10536447
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 36
- Issue:
- 6
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Insects rely on their olfactory systems to detect odors and locate odor sources through highly efficient flapping-wing mechanisms. While previous studies on bio-inspired unsteady flows have primarily examined the aerodynamic functions of flapping wings, they have largely overlooked the effects of wing-induced unsteady flows on airborne odor stimuli. This study aims to explore how flapping kinematics influence odorant transport. Computational fluid dynamics simulations were employed to investigate unsteady flow fields and odorant transport by solving the Navier–Stokes and odor advection–diffusion equations. Both two-dimensional (2D) and three-dimensional (3D) simulations were conducted to visualize the flow fields and odor concentration distributions generated by pitching–plunging airfoils. Our findings reveal that higher Strouhal numbers, characterized by increased flapping frequency, produce stronger flow jets that enhance odor advection and dissipation downstream, while reducing odor concentration on the airfoil surface. In 2D simulations, symmetry breaking at high Strouhal numbers causes oblique advection of vortices and odor plumes. In contrast, 3D simulations exhibit bifurcated horseshoe-like vortex rings and corresponding odor plume bifurcations. These findings highlight the intricate coupling between unsteady aerodynamics and odor transport, offering valuable insights for bio-inspired designs and advanced olfactory navigation systems.more » « less
-
Abstract Mineral dissolution in porous media coupled with single- and/or multi-phase flows is pervasive in natural and engineering systems. Dissolution modifies the physical, hydrological, and geochemical properties of the solid matrix, resulting in a complex coupling between local dissolution rate and pore-scale flow. The work reports a microfluidic approach that includes 2D reactive porous media and advanced pore flow diagnostics for the study of pore-scale dissolution in porous media with unprecedented details. The 2D microfluidic porous media, called micromodels, were fabricated in calcite by combining photolithography and wet etching, which not only offers precise control over the structural and chemical properties, but also facilitate unobstructed optical access to the pore flow, significantly improving over existing methods. We believe the work represents the first of its kind as it for the first time directly applies photolithography to calcite samples and demonstrates the use of particle image velocimetry to investigate chemical reactions in porous media. The preliminary results have revealed the crucial roles of local concentration gradients in mineral dissolution and call for reconsideration of many assumptions used in the current modeling tools, which paves the way for renewed fundamental understanding of reactive transport and improved modeling tools with better accuracy.more » « less
-
Solute transport and biogeochemical reactions in porous and fractured media flows are controlled by mixing, as are subsurface engineering operations such as contaminant remediation, geothermal energy production, and carbon sequestration. Porous media flows are generally regarded as slow, so the effects of fluid inertia on mixing and reaction are typically ignored. Here, we demonstrate through microfluidic experiments and numerical simulations of mixing-induced reaction that inertial recirculating flows readily emerge in laminar porous media flows and dramatically alter mixing and reaction dynamics. An optimal Reynolds number that maximizes the reaction rate is observed for individual pore throats of different sizes. This reaction maximization is attributed to the effects of recirculation flows on reactant availability, mixing, and reaction completion, which depend on the topology of recirculation relative to the boundary of the reactants or mixing interface. Recirculation enhances mixing and reactant availability, but a further increase in flow velocity reduces the residence time in recirculation, leading to a decrease in reaction rate. The reaction maximization is also confirmed in a flow channel with grain inclusions and randomized porous media. Interestingly, the domain-wide reaction rate shows a dramatic increase with increasing Re in the randomized porous media case. This is because fluid inertia induces complex three-dimensional flows in randomized porous media, which significantly increases transverse spreading and mixing. This study shows how inertial flows control reaction dynamics at the pore scale and beyond, thus having major implications for a wide range of environmental systems.more » « less
-
We study the mixing dynamics of solute blobs in the flow through saturated heterogeneous porous media. As the solute plume is advected through a heterogeneous porous medium it suffers a series of deformations that determine its mixing with the ambient fluid through diffusion. Key questions are the relation between the spatial disorder and the mixing dynamics and the effect of the initial solute distribution. To address these questions, we formulate the advection–diffusion problem in a coordinate system that moves and rotates along streamlines of the steady flow field. The impact of the medium heterogeneity is quantified systematically within a stochastic modelling approach. For a simple shear flow, the maximum concentration of a blob decays asymptotically as $$t^{-2}$$ . For heterogeneous porous media, the mixing of the solute blob is determined by the random sampling of flow and deformation heterogeneity along trajectories, a mechanism different from persistent shear. We derive explicit perturbation theory expressions for stretching-enhanced solute mixing that relate the medium structure and mixing behaviour. The solution is valid for moderate heterogeneity. The random sampling of shear along trajectories leads to a $$t^{-3/2}$$ decay of the maximum concentration as opposed to an equivalent homogeneous medium, for which it decays as $$t^{-1}$$ .more » « less
An official website of the United States government

