skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MOTIV: Visual Exploration of Moral Framing in Social Media
We present a visual computing framework for analysing moral rhetoric on social media around controversial topics. Using Moral Foundation Theory, we propose a methodology for deconstructing and visualizing the when, where and who behind each of these moral dimensions as expressed in microblog data. We characterize the design of this framework, developed in collaboration with experts from language processing, communications and causal inference. Our approach integrates microblog data with multiple sources of geospatial and temporal data, and leverages unsupervised machine learning (generalized additive models) to support collaborative hypothesis discovery and testing. We implement this approach in a system named MOTIV. We illustrate this approach on two problems, one related to Stay‐at‐home policies during the COVID‐19 pandemic, and the other related to the Black Lives Matter movement. Through detailed case studies and discussions with collaborators, we identify several insights discovered regarding the different drivers of moral sentiment in social media. Our results indicate that this visual approach supports rapid, collaborative hypothesis testing, and can help give insights into the underlying moral values behind controversial political issues.  more » « less
Award ID(s):
2320261
PAR ID:
10536526
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Computer Graphics Forum
ISSN:
0167-7055
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe the design process and the challenges we met during a rapid multi-disciplinary pandemic project related to stay-at-home orders and social media moral frames. Unlike our typical design experience, we had to handle a steeper learning curve, emerging and continually changing datasets, as well as under-specified design requirements, persistent low visual literacy, and an extremely fast turnaround for new data ingestion, prototyping, testing and deployment. We describe the lessons learned through this experience. 
    more » « less
  2. Demeniconi; Carlotta; Nitesh V. Chawla (Ed.)
    The motives and means of explicit state censorship have been well studied, both quantitatively and qualitatively. Self-censorship by media outlets, however, has not received nearly as much attention, mostly because it is difficult to systematically detect. We develop a novel approach to identify news media self-censorship by using social media as a sensor. We develop a hypothesis testing framework to identify and evaluate censored clusters of keywords and a near-linear-time algorithm (called GraphDPD) to identify the highest-scoring clusters as indicators of censorship. We evaluate the accuracy of our framework, versus other state-of-the-art algorithms, using both semi-synthetic and real-world data from Mexico and Venezuela during Year 2014. These tests demonstrate the capacity of our framework to identify self-censorship and provide an indicator of broader media freedom. The results of this study lay the foundation for detection, study, and policy-response to self-censorship. 
    more » « less
  3. Moral reasoning reflects how people acquire and apply moral rules in particular situations. With social interactions increasingly happening online, social media provides an unprecedented opportunity to assess in-the-wild moral reasoning. We investigate the commonsense aspects of morality empirically using data from a Reddit subcommunity (i.e., a subreddit), r/AmITheAsshole, where an author describes their behavior in a situation and seeks comments about whether that behavior was appropriate. A commenter judges and provides reasons for whether an author or others’ behaviors were wrong. We focus on the novel problem of understanding the moral reasoning implicit in user comments about the propriety of an author’s behavior. Specifically, we explore associations between the common elements of the indicated rationale and the extractable social factors. Our results suggest that a moral response depends on the author’s gender and the topic of a post. Typical situations and behaviors include expressing anger emotion and using sensible words (e.g., f-ck, hell, and damn) in work-related situations. Moreover, we find that commonly expressed reasons also depend on commenters’ interests. 
    more » « less
  4. Over the last decade, research has revealed the high prevalence of cyberbullying among youth and raised serious concerns in society. Information on the social media platforms where cyberbullying is most prevalent (e.g., Instagram, Facebook, Twitter) is inherently multi-modal, yet most existing work on cyberbullying identification has focused solely on building generic classification models that rely exclusively on text analysis of online social media sessions (e.g., posts). Despite their empirical success, these efforts ignore the multi-modal information manifested in social media data (e.g., image, video, user profile, time, and location), and thus fail to offer a comprehensive understanding of cyberbullying. Conventionally, when information from different modalities is presented together, it often reveals complementary insights about the application domain and facilitates better learning performance. In this paper, we study the novel problem of cyberbullying detection within a multi-modal context by exploiting social media data in a collaborative way. This task, however, is challenging due to the complex combination of both cross-modal correlations among various modalities and structural dependencies between different social media sessions, and the diverse attribute information of different modalities. To address these challenges, we propose XBully, a novel cyberbullying detection framework, that first reformulates multi-modal social media data as a heterogeneous network and then aims to learn node embedding representations upon it. Extensive experimental evaluations on real-world multi-modal social media datasets show that the XBully framework is superior to the state-of-the-art cyberbullying detection models. 
    more » « less
  5. We propose an over-the-air learning framework for collaborative decision making in wireless sensor networks. The low complexity framework leverages low-latency sensor transmission for a decision server to coordinate measurement sensors for hypothesis testing through over-the-air aggregation of sensor data over a multiple-access channel. We formulate several collaborative over-the-air hypothesis testing problems under different practical protocols for collaborative learning and decision making. We develop hypothesis tests for these network protocols and deployment scenarios including channel fading. We provide performance benchmark for both basic likelihood ratio test and generalized likelihood ratio test under different deployment conditions. Our results clearly demonstrate gain provided by increasing number of collaborative sensors. 
    more » « less