Abstract Determining conditions for earthquake slip on faults is a key goal of fault mechanics highly relevant to seismic hazard. Previous studies have demonstrated that enhanced dynamic weakening (EDW) can lead to dynamic rupture of faults with much lower shear stress than required for rupture nucleation. We study the stress conditions before earthquake ruptures of different sizes that spontaneously evolve in numerical simulations of earthquake sequences on rate‐and‐state faults with EDW due to thermal pressurization of pore fluids. We find that average shear stress right before dynamic rupture (aka shear prestress) systematically varies with the rupture size. The smallest ruptures have prestress comparable to the local shear stress required for nucleation. Larger ruptures weaken the fault more, propagate over increasingly under‐stressed areas due to dynamic stress concentration, and result in progressively lower average prestress over the entire rupture. The effect is more significant in fault models with more efficient EDW. We find that, as a result, fault models with more efficient weakening produce fewer small events and result in systematically lower b‐values of the frequency‐magnitude event distributions. The findings (a) illustrate that large earthquakes can occur on faults that appear not to be critically stressed compared to stresses required for slip nucleation; (b) highlight the importance of finite‐fault modeling in relating the local friction behavior determined in the lab to the field scale; and (c) suggest that paucity of small events or seismic quiescence may be the observational indication of mature faults that operate under low shear stress due to EDW.
more »
« less
This content will become publicly available on May 31, 2025
Quake-DFN: A Software for Simulating Sequences of Induced Earthquakes in a Discrete Fault Network
ABSTRACT We present an earthquake simulator, Quake-DFN, which allows simulating sequences of earthquakes in a 3D discrete fault network governed by rate and state friction. The simulator is quasi-dynamic, with inertial effects being approximated by radiation damping and a lumped mass. The lumped mass term allows for accounting for inertial overshoot and, in addition, makes the computation more effective. Quake-DFN is compared against three publicly available simulation results: (1) the rupture of a planar fault with uniform prestress (SEAS BP5-QD), (2) the propagation of a rupture across a stepover separating two parallel planar faults (RSQSim and FaultMod), and (3) a branch fault system with a secondary fault splaying from a main fault (FaultMod). Examples of injection-induced earthquake simulations are shown for three different fault geometries: (1) a planar fault with a wide range of initial stresses, (2) a branching fault system with varying fault angles and principal stress orientations, and (3) a fault network similar to the one that was activated during the 2011 Prague, Oklahoma, earthquake sequence. The simulations produce realistic earthquake sequences. The time and magnitude of the induced earthquakes observed in these simulations depend on the difference between the initial friction and the residual friction μi−μf, the value of which quantifies the potential for runaway ruptures (ruptures that can extend beyond the zone of stress perturbation due to the injection). The discrete fault simulations show that our simulator correctly accounts for the effect of fault geometry and regional stress tensor orientation and shape. These examples show that Quake-DFN can be used to simulate earthquake sequences and, most importantly, magnitudes, possibly induced or triggered by a fluid injection near a known fault system.
more »
« less
- Award ID(s):
- 1822214
- PAR ID:
- 10536544
- Publisher / Repository:
- Seismological Society of America
- Date Published:
- Journal Name:
- Bulletin of the Seismological Society of America
- ISSN:
- 0037-1106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)SUMMARY Earthquake ruptures are generally considered to be cracks that propagate as fracture or frictional slip on pre-existing faults. Crack models have been used to describe the spatial distribution of fault offset and the associated static stress changes along a fault, and have implications for friction evolution and the underlying physics of rupture processes. However, field measurements that could help refine idealized crack models are rare. Here, we describe large-scale laboratory earthquake experiments, where all rupture processes were contained within a 3-m long saw-cut granite fault, and we propose an analytical crack model that fits our measurements. Similar to natural earthquakes, laboratory measurements show coseismic slip that gradually tapers near the rupture tips. Measured stress changes show roughly constant stress drop in the centre of the ruptured region, a maximum stress increase near the rupture tips and a smooth transition in between, in a region we describe as the earthquake arrest zone. The proposed model generalizes the widely used elliptical crack model by adding gradually tapered slip at the ends of the rupture. Different from the cohesive zone described by fracture mechanics, we propose that the transition in stress changes and the corresponding linear taper observed in the earthquake arrest zone are the result of rupture termination conditions primarily controlled by the initial stress distribution. It is the heterogeneous initial stress distribution that controls the arrest of laboratory earthquakes, and the features of static stress changes. We also performed dynamic rupture simulations that confirm how arrest conditions can affect slip taper and static stress changes. If applicable to larger natural earthquakes, this distinction between an earthquake arrest zone (that depends on stress conditions) and a cohesive zone (that depends primarily on strength evolution) has important implications for how seismic observations of earthquake fracture energy should be interpreted.more » « less
-
Abstract The 2023 Turkey earthquake sequence involved unexpected ruptures across numerous fault segments. We present 3D dynamic rupture simulations to illuminate the complex dynamics of the earthquake doublet. Our models are constrained by observations available within days of the sequence and deliver timely, mechanically consistent explanations of the unforeseen rupture paths, diverse rupture speeds, multiple slip episodes, heterogeneous fault offsets, locally strong shaking, and fault system interactions. Our simulations link both earthquakes, matching geodetic and seismic observations and reconciling regional seismotectonics, rupture dynamics, and ground motions of a fault system represented by 10 curved dipping segments and embedded in a heterogeneous stress field. The Mw 7.8 earthquake features delayed backward branching from a steeply branching splay fault, not requiring supershear speeds. The asymmetrical dynamics of the distinct, bilateral Mw 7.7 earthquake are explained by heterogeneous fault strength, prestress orientation, fracture energy, and static stress changes from the previous earthquake. Our models explain the northward deviation of its eastern rupture and the minimal slip observed on the Sürgü fault. 3D dynamic rupture scenarios can elucidate unexpected observations shortly after major earthquakes, providing timely insights for data-driven analysis and hazard assessment toward a comprehensive, physically consistent understanding of the mechanics of multifault systems.more » « less
-
Abstract Megathrust geometric properties exhibit some of the strongest correlations with maximum earthquake magnitude in global surveys of large subduction zone earthquakes, but the mechanisms through which fault geometry influences subduction earthquake cycle dynamics remain unresolved. Here, we develop 39 models of sequences of earthquakes and aseismic slip (SEAS) on variably‐dipping planar and variably‐curved nonplanar megathrusts using the volumetric, high‐order accurate codetandemto account for fault curvature. We vary the dip, downdip curvature and width of the seismogenic zone to examine how slab geometry mechanically influences megathrust seismic cycles, including the size, variability, and interevent timing of earthquakes. Dip and curvature control characteristic slip styles primarily through their influence on seismogenic zone width: wider seismogenic zones allow shallowly‐dipping megathrusts to host larger earthquakes than steeply‐dipping ones. Under elevated pore pressure and less strongly velocity‐weakening friction, all modeled fault geometries host uniform periodic ruptures. In contrast, shallowly‐dipping and sharply‐curved megathrusts host multi‐period supercycles of slow‐to‐fast, small‐to‐large slip events under higher effective stresses and more strongly velocity‐weakening friction. We discuss how subduction zones' maximum earthquake magnitudes may be primarily controlled by the dip and dimensions of the seismogenic zone, while second‐order effects from structurally‐derived mechanical heterogeneity modulate the recurrence frequency and timing of these events. Our results suggest that enhanced co‐ and interseismic strength and stress variability along the megathrust, such as induced near areas of high or heterogeneous fault curvature, limits how frequently large ruptures occur and may explain curved faults' tendency to host more frequent, smaller earthquakes than flat faults.more » « less
-
SUMMARY Earthquakes come in clusters formed of mostly aftershock sequences, swarms and occasional foreshock sequences. This clustering is thought to result either from stress transfer among faults, a process referred to as cascading, or from transient loading by aseismic slip (pre-slip, afterslip or slow slip events). The ETAS statistical model is often used to quantify the fraction of clustering due to stress transfer and to assess the eventual need for aseismic slip to explain foreshocks or swarms. Another popular model of clustering relies on the earthquake nucleation model derived from experimental rate-and-state friction. According to this model, earthquakes cluster because they are time-advanced by the stress change imparted by the mainshock. This model ignores stress interactions among aftershocks and cannot explain foreshocks or swarms in the absence of transient loading. Here, we analyse foreshock, swarm and aftershock sequences resulting from cascades in a Discrete Fault Network model governed by rate-and-state friction. We show that the model produces realistic swarms, foreshocks and aftershocks. The Omori law, characterizing the temporal decay of aftershocks, emerges in all simulations independently of the assumed initial condition. In our simulations, the Omori law results from the earthquake nucleation process due to rate and state friction and from the heterogeneous stress changes due to the coseismic stress transfers. By contrast, the inverse Omori law, which characterizes the accelerating rate of foreshocks, emerges only in the simulations with a dense enough fault system. A high-density complex fault zone favours fault interactions and the emergence of an accelerating sequence of foreshocks. Seismicity catalogues generated with our discrete fault network model can generally be fitted with the ETAS model but with some material differences. In the discrete fault network simulations, fault interactions are weaker in aftershock sequences because they occur in a broader zone of lower fault density and because of the depletion of critically stressed faults. The productivity of the cascading process is, therefore, significantly higher in foreshocks than in aftershocks if fault zone complexity is high. This effect is not captured by the ETAS model of fault interactions. It follows that a foreshock acceleration stronger than expected from ETAS statistics does not necessarily require aseismic slip preceding the mainshock (pre-slip). It can be a manifestation of a cascading process enhanced by the topological properties of the fault network. Similarly, earthquake swarms might not always imply transient loading by aseismic slip, as they can emerge from stress interactions.more » « less