We propose a new graph neural network (GNN) module, based on relaxations of recently proposed geometric scattering transforms, which consist of a cascade of graph wavelet filters. Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations. The incorporation of our LEGS-module in GNNs enables the learning of longer-range graph relations compared to many popular GNNs, which often rely on encoding graph structure via smoothness or similarity between neighbors. Further, its wavelet priors result in simplified architectures with significantly fewer learned parameters compared to competing GNNs. We demonstrate the predictive performance of LEGS-based networks on graph classification benchmarks, as well as the descriptive quality of their learned features in biochemical graph data exploration tasks.
more »
« less
Learnable Filters for Geometric Scattering Modules
We propose a new graph neural network (GNN) module, based on relaxations of recently proposed geometric scattering transforms, which consist of a cascade of graph wavelet filters. Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations. The incorporation of our LEGS-module in GNNs enables the learning of longer-range graph relations compared to many popular GNNs, which often rely on encoding graph structure via smoothness or similarity between neighbors. Further, its wavelet priors result in simplified architectures with significantly fewer learned parameters compared to competing GNNs. We demonstrate the predictive performance of LEGS-based networks on graph classification benchmarks, as well as the descriptive quality of their learned features in biochemical graph data exploration tasks. Our results show that LEGS-based networks match or outperforms popular GNNs, as well as the original geometric scattering construction, on many datasets, in particular in biochemical domains, while retaining certain mathematical properties of handcrafted (non-learned) geometric scattering.
more »
« less
- Award ID(s):
- 2327211
- PAR ID:
- 10536545
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Signal Processing
- Volume:
- 72
- ISSN:
- 1053-587X
- Page Range / eLocation ID:
- 2939 to 2952
- Subject(s) / Keyword(s):
- Geometric scattering graph neural networks graph signal processing
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The scattering transform is a multilayered wavelet-based architecture that acts as a model of convolutional neural networks. Recently, several works have generalized the scattering transform to graph-structured data. Our work builds on these constructions by introducing windowed and nonwindowed geometric scattering transforms for graphs based on two very general classes wavelets, which are in most cases based on asymmetric matrices. We show that these transforms have many of the same theoretical guarantees as their symmetric counterparts. As a result, the proposed construction unifies and extends known theoretical results for many of the existing graph scattering architectures. Therefore, it helps bridge the gap between geometric scattering and other graph neural networks by introducing a large family of networks with provable stability and invariance guarantees. These results lay the groundwork for future deep learning architectures for graph-structured data that have learned filters and also provably have desirable theoretical properties.more » « less
-
Convolutional neural networks (CNNs) are revolutionizing imaging science for two- and three-dimensional images over Euclidean domains. However, many data sets are intrinsically non-Euclidean and are better modeled through other mathematical structures, such as graphs or manifolds. This state of affairs has led to the development of geometric deep learning, which refers to a body of research that aims to translate the principles of CNNs to these non-Euclidean structures. In the process, various challenges have arisen, including how to define such geometric networks, how to compute and train them efficiently, and what are their mathematical properties. In this letter we describe the geometric wavelet scattering transform, which is a type of geometric CNN for graphs and manifolds consisting of alternating multiscale geometric wavelet transforms and nonlinear activation functions. As the name suggests, the geometric wavelet scattering transform is an adaptation of the Euclidean wavelet scattering transform, first introduced by S. Mallat, to graph and manifold data. Like its Euclidean counterpart, the geometric wavelet scattering transform has several desirable properties. In the manifold setting these properties include isometric invariance up to a user specified scale and stability to small diffeomorphisms. Numerical results on manifold and graph data sets, including graph and manifold classification tasks as well as others, illustrate the practical utility of the approach.more » « less
-
Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification. However, much less work has been done on signal classification, where the data consists of many functions (referred to as signals) defined on the vertices of a single graph. These tasks require networks designed differently from those designed for traditional GNN tasks. Indeed, traditional GNNs rely on localized low-pass filters, and signals of interest may have intricate multi-frequency behavior and exhibit long range interactions. This motivates us to introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform. Our network is able to capture both local and global signal structure and is able to capture both low-frequency and high-frequency information. We make several crucial changes to the original geometric scattering architecture which we prove increase the ability of our network to capture information about the input signal and show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.more » « less
-
A graph, made up of vertices and edges, is a natural representation for many real-world applications. Graph artificial intelligence (AI) techniques, especially graph neural networks (GNNs), are becoming increasingly important in modern machine learning and data analysis, as they can accurately represent high- dimensional features of vertices, edges, and structure information into low-dimensional embeddings. They have become a valuable area of study for students in fields like computer science, data science, and AI. However, the students are facing two challenges to grasp the knowledge of GNNs, including (i) learning GNNs often requires multidiscipline knowledge, and (ii) resources for learning GNNs are often fragmented. Motivated by that, we designed a self-contained course module on high-performance computing for graph AI: from a top-down perspective based on our study in this area for the past years. In particular, we divide them into four levels from the top to the bottom, including (i) level 1: graph theory basics, (ii) level 2: fundamental theories of GNNs, (iii) level 3: efficient graph AI computation framework, and (iv) level 4: GPU architecture and programming. In addition, we have disseminated part of this module into different educational activities, such as courses and tutorials. This paper is submitted for the Research to Education track of EduPar-25.more » « less
An official website of the United States government

