The scattering transform is a multilayered, wavelet-based transform initially introduced as a mathematical model of convolutional neural networks (CNNs) that has played a foundational role in our understanding of these networks’ stability and invariance properties. In subsequent years, there has been widespread interest in extending the success of CNNs to data sets with non- Euclidean structure, such as graphs and manifolds, leading to the emerging field of geometric deep learning. In order to improve our understanding of the architectures used in this new field, several papers have proposed generalizations of the scattering transform for non-Euclidean data structures such as undirected graphs and compact Riemannian manifolds without boundary. Analogous to the original scattering transform, these works prove that these variants of the scattering transform have desirable stability and invariance properties and aim to improve our understanding of the neural networks used in geometric deep learning. In this paper, we introduce a general, unified model for geometric scattering on measure spaces. Our proposed framework includes previous work on compact Riemannian manifolds without boundary and undirected graphs as special cases but also applies to more general settings such as directed graphs, signed graphs, and manifolds with boundary. We propose a new criterion that identifies to which groups a useful representation should be invariant and show that this criterion is sufficient to guarantee that the scattering transform has desirable stability and invariance properties. Additionally, we consider finite measure spaces that are obtained from randomly sampling an unknown manifold. We propose two methods for constructing a data-driven graph on which the associated graph scattering transform approximates the scattering transform on the underlying manifold. Moreover, we use a diffusion-maps based approach to prove quantitative estimates on the rate of convergence of one of these approximations as the number of sample points tends to infinity. Lastly, we showcase the utility of our method on spherical images, a directed graph stochastic block model, and on high-dimensional single-cell data.
more »
« less
Directed Scattering for Knowledge Graph-Based Cellular Signaling Analysis
Directed graphs are a natural model for many phenomena, in particular scientific knowledge graphs such as molecular interaction or chemical reaction networks that define cellular signaling relationships. In these situations, source nodes typically have distinct biophysical properties from sinks. Due to their ordered and unidirectional relationships, many such networks also have hierarchical and multiscale structure. However, the majority of methods performing node- and edge-level tasks in machine learning do not take these properties into account, and thus have not been leveraged effectively for scientific tasks such as cellular signaling network inference. We propose a new framework called Directed Scattering Autoencoder (DSAE) which uses a directed version of a geometric scattering transform, combined with the non-linear dimensionality reduction properties of an autoencoder and the geometric properties of the hyperbolic space to learn latent hierarchies. We show this method outperforms numerous others on tasks such as embedding directed graphs and learning cellular signaling networks.
more »
« less
- Award ID(s):
- 2327211
- PAR ID:
- 10536549
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-4485-1
- Page Range / eLocation ID:
- 9761 to 9765
- Subject(s) / Keyword(s):
- Dimensionality reduction Biological system modeling Scattering Directed graphs Transforms Knowledge graphs Signal processing
- Format(s):
- Medium: X
- Location:
- Seoul, Korea, Republic of
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Convolutional neural networks (CNNs) are revolutionizing imaging science for two- and three-dimensional images over Euclidean domains. However, many data sets are intrinsically non-Euclidean and are better modeled through other mathematical structures, such as graphs or manifolds. This state of affairs has led to the development of geometric deep learning, which refers to a body of research that aims to translate the principles of CNNs to these non-Euclidean structures. In the process, various challenges have arisen, including how to define such geometric networks, how to compute and train them efficiently, and what are their mathematical properties. In this letter we describe the geometric wavelet scattering transform, which is a type of geometric CNN for graphs and manifolds consisting of alternating multiscale geometric wavelet transforms and nonlinear activation functions. As the name suggests, the geometric wavelet scattering transform is an adaptation of the Euclidean wavelet scattering transform, first introduced by S. Mallat, to graph and manifold data. Like its Euclidean counterpart, the geometric wavelet scattering transform has several desirable properties. In the manifold setting these properties include isometric invariance up to a user specified scale and stability to small diffeomorphisms. Numerical results on manifold and graph data sets, including graph and manifold classification tasks as well as others, illustrate the practical utility of the approach.more » « less
-
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.S.; Vaughan, J. Wortman (Ed.)The prevalence of graph-based data has spurred the rapid development of graph neural networks (GNNs) and related machine learning algorithms. Yet, despite the many datasets naturally modeled as directed graphs, including citation, website, and traffic networks, the vast majority of this research focuses on undirected graphs. In this paper, we propose MagNet, a GNN for directed graphs based on a complex Hermitian matrix known as the magnetic Laplacian. This matrix encodes undirected geometric structure in the magnitude of its entries and directional information in their phase. A charge parameter attunes spectral information to variation among directed cycles. We apply our network to a variety of directed graph node classification and link prediction tasks showing that MagNet performs well on all tasks and that its performance exceeds all other methods on a majority of such tasks. The underlying principles of MagNet are such that it can be adapted to other GNN architectures.more » « less
-
The scattering transform is a multilayered wavelet-based architecture that acts as a model of convolutional neural networks. Recently, several works have generalized the scattering transform to graph-structured data. Our work builds on these constructions by introducing windowed and nonwindowed geometric scattering transforms for graphs based on two very general classes wavelets, which are in most cases based on asymmetric matrices. We show that these transforms have many of the same theoretical guarantees as their symmetric counterparts. As a result, the proposed construction unifies and extends known theoretical results for many of the existing graph scattering architectures. Therefore, it helps bridge the gap between geometric scattering and other graph neural networks by introducing a large family of networks with provable stability and invariance guarantees. These results lay the groundwork for future deep learning architectures for graph-structured data that have learned filters and also provably have desirable theoretical properties.more » « less
-
Graph neural networks (GNNs) have been used extensively for addressing problems in drug design and discovery. Both ligand and target molecules are represented as graphs with node and edge features encoding information about atomic elements and bonds respectively. Although existing deep learning models perform remarkably well at predicting physicochemical properties and binding affinities, the generation of new molecules with optimized properties remains challenging. Inherently, most GNNs perform poorly in whole-graph representation due to the limitations of the message-passing paradigm. Furthermore, step-by-step graph generation frameworks that use reinforcement learning or other sequential processing can be slow and result in a high proportion of invalid molecules with substantial post-processing needed in order to satisfy the principles of stoichiometry. To address these issues, we propose a representation-first approach to molecular graph generation. We guide the latent representation of an autoencoder by capturing graph structure information with the geometric scattering transform and apply penalties that structure the representation also by molecular properties. We show that this highly structured latent space can be directly used for molecular graph generation by the use of a GAN. We demonstrate that our architecture learns meaningful representations of drug datasets and provides a platform for goal-directed drug synthesis.more » « less
An official website of the United States government

