skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-performance computing in undergraduate education at primarily undergraduate institutions in Wisconsin: Progress, challenges, and opportunities
Award ID(s):
2320718
PAR ID:
10536884
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Education and Information Technologies
ISSN:
1360-2357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article describes the Research Apprenticeship Program (RAP), a mentored undergraduate research experience implemented in 2017 at a public land-grant institution located in the Appalachian region. The article focuses on RAP’s approach to recruiting, retaining, and supporting students in faculty-mentored research and creative inquiry. To assess the impact of RAP on undergraduate retention, institutional data were collected to identify RAP participants from the years 2017 to 2022 (n = 868) to compare next-year retention rates with institutional averages across similar demographic groups. The results showed that retention rates for RAP participants were significantly higher than institutional averages, and disaggregated data also showed higher retention rates for participants from historically marginalized populations. These This article describes the Research Apprenticeship Program (RAP), a mentored undergraduate research experience implemented in 2017 at a public land-grant institution located in the Appalachian region. The article focuses on RAP’s approach to recruiting, retaining, and supporting students in faculty-mentored research and creative inquiry. To assess the impact of RAP on undergraduate retention, institutional data were collected to identify RAP participants from the years 2017 to 2022 (n = 868) to compare next-year retention rates with institutional averages across similar demographic groups. The results showed that retention rates for RAP participants were significantly higher than institutional averages, and disaggregated data also showed higher retention rates for participants from historically marginalized populations. These results provide evidence of the program’s contribution to the educational development of the Appalachian region. 
    more » « less
  2. Undergraduate research experiences are a promising way to broaden participation in computer architecture research and have been shown to improve student learning, engagement, and retention. These outcomes can be more profound and lasting if students experience research early. However, there are many barriers to early research in computer architecture some of which include the gap between pedagogy and research, the lower emphasis on hardware design compared to software in first-year courses, and the lack of online resources. We propose lowering these barriers through a methodical approach by involving undergraduates in early research and by creating freely available and innovative educational tools for designing hardware. We present the experience of a team of undergraduate students with research over one academic year using a Python hardware description language, PyRTL. PyRTL was developed to enable early entry into digital design. Its overarching goals are simplicity, usabil- ity, clarity, and extensibility, a stark contrast to traditional languages like Verilog and VHDL that have a steep learning curve. Instead of introducing traditional languages early in the undergraduate curriculum, PyRTL takes the opposite approach, which is to build on what students already know well: a popular programming language (Python), software design patterns, and software engineering principles. The students conducted their research in the context of the Early Research Scholars Program (ERSP), a program designed to expand access to research among women and underrepresented minority students in their second year through a well-designed support structure. 
    more » « less
  3. Gamification presents potential benefits in courses that traditionally require the comprehension of complex concepts and a high level of technical and abstract thinking. Courses in Cyber Security Operations (CSO) undergraduate education meet these criterion. This research evaluates organizational constructs that have been applied to gamification applications (GAs) in CSO education. It utilizes framing theory and frame-reflective discourse analysis to outline frames based on engagement levels and analyzes the current distribution of GAs. The following organizational constructs for GAs in data structures and algorithms education apply to CSO education: Enhanced Examination (EE), Visualization of Abstract Ideas (VAI), Dynamic Gamification (DG), Social and Collaborative Engagement (SGE), and Collaborative Gamification Development (CGD). Three additional frames are identified: Missions and Quests (MQ), Simulations (Sim) and Aspirational Learning (AL). MQ GAs have process-driven quests, stories, and/or descriptive scenarios to augment engagement. Sim GAs use environmental immersion to demonstrate real world problem solving while allowing freedom of movement. AL GAs use goal-based designs like Capture The Flag (CTF) missions to enhance engagement. Twenty-seven existing CSO GAs fit within the MQ frame as CSO education lends itself well to these types of experiences. Seventeen CSO GAs fall within the AL GA frame, many of these manifesting as CTF missions. Seventeen CSO GAs fit in the EE Frame due to their optimization in the analysis of learning progress. Nine Sim GAs were successfully deployed in CSO education, followed by 4 VAI, 3 SGE, and 3 DG GAs. 
    more » « less
  4. The process of becoming an engineer is fundamentally an identity development process and students who identify as engineers are more likely both to graduate and to enter the field upon graduation. Therefore an opportunity in engineering education is providing undergraduates experiences that bolster their sense of identity as engineers. In particular, experiences that offer authentic engagement in engineering work should be expected to promote engineering identity. This paper tests the relationship between collegiate experiences expected to promote engineering identity formation with change in engineering identity in a national sample of 918 engineering students using data from the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS) to create a longitudinal sample. Engineering identity is measured using a composite of items available in both surveys to assess change in engineering identity over four years, and intention to pursue an engineering career is also tested. Results show participation in undergraduate research appears to increase engineering identity, while participation in an internship increases likelihood of pursuing an engineering career. 
    more » « less