The sound of a vortex ring passing near a semi-infinite porous edge is investigated analytically. A Green's function approach solves the associated vortex sound problem and determines the time-dependent pressure signal and its directivity in the acoustic far field as a function of a single dimensionless porosity parameter. At large values of this parameter, the radiated acoustic power scales on the vortex ring speed $$U$$ and the nearest distance between the edge and the vortex ring $$L$$ as $$U^6 L^{-5}$$ , in contrast to the $$U^5 L^{-4}$$ scaling recovered in the impermeable edge limit. Results for the vortex ring configuration in a quiescent fluid furnish an analogue to scaling results from standard turbulence noise generation analyses, and permit a direct comparison to experiments described in Part 2 that circumvent contamination of the weak sound from porous edges by background noise sources that exist as a result of a mean flow.
more »
« less
This content will become publicly available on August 4, 2025
Experimental Study of Trailing-Edge Bluntness Noise Reduction by Porous Plates
The acoustic and aerodynamic fields of blunt porous plates are examined experimentally in an effort to mitigate trailing-edge bluntness noise. The plates are characterized by a single dimensionless porosity parameter identified in previous works that controls the influence of porosity on the sound field. Hot-wire anemometry interrogates the velocity field to connect turbulence details of specific regions to flow noise directivity and beamforming source maps. Porous plates are demonstrated to reduce the bluntness-induced noise by up to 17 dB and progressively suppress broadband low-frequency noise as the value of the porosity parameter increases. However, an increase in this parameter also increases the high-frequency noise created by the pores themselves. The same highly perforated plate characterized by a large value of the porosity parameter reduces the bluntness-induced vortex shedding that is present in the wake of the impermeable plate. Lastly, pore shape and positional alignment are shown to have a complex effect on the acoustic field. Among the porosity designs considered, plates with circular pores are most effective for low-frequency noise reductions but generate high-frequency noise. No meaningful difference is found between the acoustic spectra from plates of the same open-area fraction with pores aligned along or staggered about the flow direction.
more »
« less
- PAR ID:
- 10536901
- Publisher / Repository:
- American Institute of Aeronautics and Astronautics, Inc.
- Date Published:
- Journal Name:
- AIAA Journal
- ISSN:
- 0001-1452
- Page Range / eLocation ID:
- 1 to 12
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The acoustic far-field pressure is determined for one-dimensional finite-chord panels with uniform porosity in a single-sided uniform flow. The unsteady, non-circulatory pressure on the panel is computed using a previously established analysis method. The acoustic field is computed using the Green’s method. Results from this acoustic analysis identify the sensitivity of the far-field pressure magnitude and directivity to changes in flow Mach number, the reduced frequency of the panel vibration, and the panel porosity level characterized by a Darcy-type porosity boundary condition.more » « less
-
Laser powder bed fusion is a dominant metal 3D printing technology. However, porosity defects remain a challenge for fatigue-sensitive applications. Some porosity is associated with deep and narrow vapor depressions called keyholes, which occur under high-power, low–scan speed laser melting conditions. High-speed x-ray imaging enables operando observation of the detailed formation process of pores in Ti-6Al-4V caused by a critical instability at the keyhole tip. We found that the boundary of the keyhole porosity regime in power-velocity space is sharp and smooth, varying only slightly between the bare plate and powder bed. The critical keyhole instability generates acoustic waves in the melt pool that provide additional yet vital driving force for the pores near the keyhole tip to move away from the keyhole and become trapped as defects.more » « less
-
Natural convection in porous media is a fundamental process for the long-term storage of CO 2 in deep saline aquifers. Typically, details of mass transfer in porous media are inferred from the numerical solution of the volume-averaged Darcy–Oberbeck–Boussinesq (DOB) equations, even though these equations do not account for the microscopic properties of a porous medium. According to the DOB equations, natural convection in a porous medium is uniquely determined by the Rayleigh number. However, in contrast with experiments, DOB simulations yield a linear scaling of the Sherwood number with the Rayleigh number ( $Ra$ ) for high values of $Ra$ ( $$Ra\gg 1300$$ ). Here, we perform direct numerical simulations (DNS), fully resolving the flow field within the pores. We show that the boundary layer thickness is determined by the pore size instead of the Rayleigh number, as previously assumed. The mega- and proto-plume sizes increase with the pore size. Our DNS results exhibit a nonlinear scaling of the Sherwood number at high porosity, and for the same Rayleigh number, higher Sherwood numbers are predicted by DNS at lower porosities. It can be concluded that the scaling of the Sherwood number depends on the porosity and the pore-scale parameters, which is consistent with experimental studies.more » « less
-
Porous polymers have interesting acoustic properties including wave dampening and acoustic impedance matching and may be used in numerous acoustic applications, e.g., waveguiding or acoustic cloaking. These materials can be prepared by the inclusion of gas-filled voids, or pores, within an elastic polymer network; therefore, porous polymers that have controlled porosity values and a wide range of possible mechanical properties are needed, as these are key factors that impact the sound-dampening properties. Here, the synthesis of acoustic materials with varying porosities and mechanical properties that could be controlled independent of the pore morphology using emulsion templated polymerizations is described. Polydimethylsiloxane-based ABA triblock copolymer surfactants were prepared using reversible addition−fragmentation chain transfer polymerizations to control the emulsion template and act as an additional crosslinker in the polymerization. Acoustic materials prepared with reactive surfactants possessed a storage modulus of ∼300 kPa at a total porosity of 71% compared to materials prepared using analogous nonreactive surfactants that possessed storage modulus values of ∼150 kPa at similar porosities. These materials display very low longitudinal sound speeds of ∼35 m/s at ultrasonic frequencies, making them excellent candidates in the preparation of acoustic devices such as metasurfaces or lenses.more » « less