The acoustic and aerodynamic fields of blunt porous plates are examined experimentally in an effort to mitigate trailing-edge bluntness noise. The plates are characterized by a single dimensionless porosity parameter identified in previous works that controls the influence of porosity on the sound field. Hot-wire anemometry interrogates the velocity field to connect turbulence details of specific regions to flow noise directivity and beamforming source maps. Porous plates are demonstrated to reduce the bluntness-induced noise by up to 17 dB and progressively suppress broadband low-frequency noise as the value of the porosity parameter increases. However, an increase in this parameter also increases the high-frequency noise created by the pores themselves. The same highly perforated plate characterized by a large value of the porosity parameter reduces the bluntness-induced vortex shedding that is present in the wake of the impermeable plate. Lastly, pore shape and positional alignment are shown to have a complex effect on the acoustic field. Among the porosity designs considered, plates with circular pores are most effective for low-frequency noise reductions but generate high-frequency noise. No meaningful difference is found between the acoustic spectra from plates of the same open-area fraction with pores aligned along or staggered about the flow direction.
more »
« less
Acoustic emission of a vortex ring near a porous edge. Part 1: theory
The sound of a vortex ring passing near a semi-infinite porous edge is investigated analytically. A Green's function approach solves the associated vortex sound problem and determines the time-dependent pressure signal and its directivity in the acoustic far field as a function of a single dimensionless porosity parameter. At large values of this parameter, the radiated acoustic power scales on the vortex ring speed $$U$$ and the nearest distance between the edge and the vortex ring $$L$$ as $$U^6 L^{-5}$$ , in contrast to the $$U^5 L^{-4}$$ scaling recovered in the impermeable edge limit. Results for the vortex ring configuration in a quiescent fluid furnish an analogue to scaling results from standard turbulence noise generation analyses, and permit a direct comparison to experiments described in Part 2 that circumvent contamination of the weak sound from porous edges by background noise sources that exist as a result of a mean flow.
more »
« less
- Award ID(s):
- 1805692
- PAR ID:
- 10356834
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 941
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The thermoacoustic effect provides a means to convert acoustic energy to heat and vice versa without the need for moving parts. This could enable the realization of mechanically-robust, noise mitigating energy harvesters via the development of thermoacoustic metastructures using additive and hybrid fabrication processes and materials. The mechanical, thermal and geometric properties of the porous stack that forms a set of acoustic waveguides in thermoacoustic metastructures are key to their performance. In this proof-ofconcept study, firstly, various ceramic and polymeric stack designs are evaluated using a custom-built thermoacoustic test rig. Influence of stack parameters such as material, length, location, porosity and pore geometry are correlated to simulations using DeltaEC, a software tool based on Rott’s linear approximation. Preliminary results also show a reduction in sound pressure level of around 5.28 dB across the thermoacoustic metastructure at resonance (117.5 Hz). An acousto-thermo-electric transduction scheme is employed to harvest useable electrical power using the best performing stack. Steady-state peak voltage generated was 33 mV for a temperature difference of about 30 degree Celsius across the stack at resonance. Further investigations are underway to establish structure-performance relationships by extracting scaling laws for power-to-volume ratio and frequency-thermal gradient dependencies.more » « less
-
Achieving sound attenuation across a broad frequency range while maintaining adequate ventilation remains a significant challenge in acoustic engineering, as there exists a rigid trade-off between attenuation ability and ventilation. In this Letter, we propose a double-layered microperforated meta-shells to serve as broadband acoustic ventilation barrier. Multiple scattering theory is first employed to characterize sound attenuation performance of the proposed design in terms of both sound absorption and transmission loss, which is not reported before. Experimental result demonstrates a good enhancement of absorption due to the insertion of inner shell with a specific perforation rate of micro cores. The mechanism can be attributed to the inter-cell coupling, which is further utilized to devise a different configuration by wrapping the meta-shell with porous sponge. It is found that adding an extra layer of sponge can further improve the low-frequency attenuation performance. The proposed broadband sound barrier with effective ventilation can find potential applications in architectural acoustics and office noise insulation.more » « less
-
Vortex crystals are quasiregular arrays of like-signed vortices in solid-body rotation embedded within a uniform background of weaker vorticity. Vortex crystals are observed at the poles of Jupiter and in laboratory experiments with magnetized electron plasmas in axisymmetric geometries. We show that vortex crystals form from the free evolution of randomly excited two-dimensional turbulence on an idealized polar cap. Once formed, the crystals are long lived and survive until the end of the simulations (300 crystal-rotation periods). We identify a fundamental length scale, L γ = ( U / γ ) 1 / 3 , characterizing the size of the crystal in terms of the mean-square velocity U of the fluid and the polar parameter γ = f p / a p 2 , with f p the Coriolis parameter at the pole and a p the polar radius of the planet.more » « less
-
null (Ed.)The primary noise sources of the vehicle are the engine, exhaust, aeroacoustic noise, and tire–pavement interaction. Noise generated by the first three factors can be reduced by replacing the combustion engine with an electric motor and optimizing aerodynamic design. Currently, a dominant noise within automobiles occurs from the tire–pavement interaction over a speed of 70–80 km/h. Most noise suppression efforts aim to use sound absorbers and cavity resonators to narrow the bandwidth of acoustic frequencies using foams. We demonstrate a technique utilizing acoustic metasurfaces (AMSes) with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. A simple technique is demonstrated that utilizes acoustic metalayers with high reflective characteristics using relatively lightweight materials for noise reduction without any change in mechanical strength or weight of the tire. The proposed design can significantly reduce the noise arising from tire–pavement interaction over a broadband of acoustic frequencies under 1000 Hz and over a wide range of vehicle speeds using a negative effective dynamic mass density approach. The experiment demonstrated that the sound transmission loss of AMSes is 2–5 dB larger than the acoustic foam near the cavity mode, at 200–300 Hz. The proposed approach can be extended to the generalized area of acoustic and vibration isolation.more » « less