BackgroundMicroglia play a critical role in neurodegenerative disorders, such as Alzheimer's disease, where alterations in microglial function may result in pathogenic amyloid-β (Aβ) accumulation, chronic neuroinflammation, and deleterious effects on neuronal function. However, studying these complex factors in vivo, where numerous confounding processes exist, is challenging, and until recently, in vitro models have not allowed sustained culture of critical cell types in the same culture. ObjectiveWe employed a rat primary tri-culture (neurons, astrocytes, and microglia) model and compared it to co-culture (neurons and astrocytes) and mono-culture (microglia) to study microglial function (i.e., motility and Aβ clearance) and proteomic response to exogenous Aβ. MethodsThe cultures were exposed to fluorescently-labeled Aβ (FITC-Aβ) particles for varying durations. Epifluorescence microscopy images were analyzed to quantify the number of FITC-Aβ particles and assess cytomorphological features. Cytokine profiles from conditioned media were obtained. Live-cell imaging was employed to extract microglia motility parameters. ResultsFITC-Aβ particles were more effectively cleared in the tri-culture compared to the co-culture. This was attributed to microglia engulfing FITC-Aβ particles, as confirmed via epifluorescence and confocal microscopy. FITC-Aβ treatment significantly increased microglia size, but had no significant effect on neuronal surface coverage or astrocyte size. Upon FITC-Aβ treatment, there was a significant increase in proinflammatory cytokines in tri-culture, but not in co-culture. Aβ treatment altered microglia motility evident as a swarming-like motion. ConclusionsThe results suggest that neuron-astrocyte-microglia interactions influence microglia function and highlight the utility of the tri-culture model for studies of neuroinflammation, neurodegeneration, and cell-cell communication. 
                        more » 
                        « less   
                    
                            
                            Re-Envisioning the Culture of Undergraduate Biology Education to Foster Black Student Success: A Clarion Call
                        
                    
    
            The Re-Envisioning Culture Network is a space dedicated to transforming the culture of undergraduate biology education to bolster Black student experiences and outcomes. This paper provides the REC Networks call to action for the field to engage in cultural transformation processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2320718
- PAR ID:
- 10536909
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Barsoum, Mark
- Publisher / Repository:
- ASCB
- Date Published:
- Journal Name:
- CBE—Life Sciences Education
- Volume:
- 22
- Issue:
- 4
- ISSN:
- 1931-7913
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Joaquim M. S. Cabral (Ed.)Human embryonic stem cells and induced pluripotent stem cells (hPSC) have an unprecedented opportunity to revolutionize the fields of developmental biology as well as tissue engineering and regenerative medicine. However, their applications have been significantly limited by the lack of chemically defined and xeno-free culture conditions. The demand for the high-quality and scaled-up production of cells for use in both research and clinical studies underscores the need to develop tools that will simplify the in vitro culture process while reducing the variables. Here, we describe a systematic study to identify the optimal conditions for the initial cell attachment of hPSC to tissue culture dishes grafted with polymers of N-(3-Sulfopropyl)-N-Methacryloxyethyl-N, N-Dimethylammoniun Betaine (PMEDSAH) in combination with chemically defined and xeno-free culture media. After testing multiple supplements and chemicals, we identified that pre-conditioning of PMEDSAH grafted plates with 10% human serum (HS) supported the initial cell attachment, which allowed for the long-term culture and maintenance of hPSC compared to cells cultured on Matrigel-coated plates. Using this culture condition, a 2.1-fold increase in the expansion of hPSC was observed without chromosomal abnormalities. Furthermore, this culture condition supported a higher reprogramming efficiency (0.37% vs. 0.22%; p < 0.0068) of somatic cells into induced pluripotent stem cells compared to the non-defined culture conditions. This defined and xeno-free hPSC culture condition may be used in obtaining the large populations of hPSC and patient-derived iPSC required for many applications in regenerative and translational medicine.more » « less
- 
            Abstract Recent developments in mesenchymal stromal cell (MSC) therapies have increased the demand for tools to improve their manufacture, including the selection of optimal culture substrate materials. While many clinical manufacturers use planar tissue culture plastic (TCP) surfaces for MSC production, others have begun exploring the use of alternative culture substrates that present a variety of spatial, mechanical, and biochemical cues that influence cell expansion and resulting cell quality. In this review, the effects of culture and material properties distinct from traditional planar TCP surfaces on MSC proliferation, surface marker expression, and commonly used indications for therapeutic potency are examined. The different properties summarized include the use of alternative culture formats such as cellular aggregates or 3D scaffolds, as well as the effects of culture substrate stiffness and presentation of specific adhesive ligands and topographical cues. Specific substrate properties can be related to greater cell expansion and improvement in specific therapeutic functionalities, demonstrating the utility of culture materials in further improving the clinical‐scale manufacture of highly secretory MSC products.more » « less
- 
            Abstract Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designedE. coli–E. colico‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineeredE. colistrains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with theE. colimono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.more » « less
- 
            Jang, Hae Lin (Ed.)3D cell culture models have gained popularity in recent years as an alternative to animal and 2D cell culture models for pharmaceutical testing and disease modeling. Polydimethylsiloxane (PDMS) is a cost-effective and accessible molding material for 3D cultures; however, routine PDMS molding may not be appropriate for extended culture of contractile and metabolically active tissues. Failures can include loss of culture adhesion to the PDMS mold and limited culture surfaces for nutrient and waste diffusion. In this study, we evaluated PDMS molding materials and surface treatments for highly contractile and metabolically active 3D cell cultures. PDMS functionalized with polydopamine allowed for extended culture duration (14.8 ± 3.97 days) when compared to polyethylamine/glutaraldehyde functionalization (6.94 ± 2.74 days); Additionally, porous PDMS extended culture duration (16.7 ± 3.51 days) compared to smooth PDMS (6.33 ± 2.05 days) after treatment with TGF-β2 to increase culture contraction. Porous PDMS additionally allowed for large (13 mm tall × 8 mm diameter) constructs to be fed by diffusion through the mold, resulting in increased cell density (0.0210 ± 0.0049 mean nuclear fraction) compared to controls (0.0045 ± 0.0016 mean nuclear fraction). As a practical demonstration of the flexibility of porous PDMS, we engineered a vascular bioartificial muscle model (VBAM) and demonstrated extended culture of VBAMs anchored with porous PDMS posts. Using this model, we assessed the effect of feeding frequency on VBAM cellularity. Feeding 3×/week significantly increased nuclear fraction at multiple tissue depths relative to 2×/day. VBAM maturation was similarly improved in 3×/week feeding as measured by nuclear alignment (23.49° ± 3.644) and nuclear aspect ratio (2.274 ± 0.0643) relative to 2x/day (35.93° ± 2.942) and (1.371 ± 0.1127), respectively. The described techniques are designed to be simple and easy to implement with minimal training or expense, improving access to dense and/or metabolically active 3D cell culture models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    