skip to main content


Title: A Virtual Professional Development Program for Computational Thinking During COVID-19
The need to expand computer science learning for all students has led to an increase in publicly and privately funded professional development (PD) opportunities for teachers. Our research team has been involved in the design of equity-focused PD opportunities for teachers in computing since 2012 by building partnerships with K-12 systems. The COVID-19 pandemic necessitated changes in our approach and a shift to a virtual PD institute. In this work, we describe our transition to a virtual PD institute, including the topics and design principles guiding the institute. We also examine how the virtual PD influenced teacher outcomes. Findings suggest an increase in teachers’ knowledge and self-efficacy while highlighting the affordances of virtual platforms most valued by teachers.  more » « less
Award ID(s):
1639649
NSF-PAR ID:
10379684
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The need to expand computer science learning for all students has led to an increase in professional development (PD) opportunities for teachers. The Covid-19 pandemic, however, necessitated changes in well-established PD programs and a shift to virtual delivery. In this work, we describe our transition to a virtual PD institute, including the topics and design principles guiding the institute. We also examine how participation in the virtual PD institute infuenced teacher outcomes. Data were collected from two cohorts of teachers. Data sources included surveys (N=30), lesson plans (N=22), and interviews (N=17) from a purposeful sample of participants. Findings gleaned from quantitative and qualitative analysis suggest an increase in teachers’ knowledge and self-efcacy while highlighting the afordances of virtual PD most valued by teachers. Findings have implications for research and practice. 
    more » « less
  2. Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Authors, 2019. Methods We followed a design-based research approach (DBR; Cobb et al., 2003; Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005) in phase one of the project before studying its effect. Data Three small pilot groups of teachers engaged in both synchronous and asynchronous components of the larger online course which began implementation with a 10-week summer course that leads into study groups of participants meeting through one academic year. We iteratively designed, tested, and revised 17 modules across three pilot versions. On average, pilot groups completed one module every two weeks. Pilot 1 began the work in May 2019; Pilot 2 began in August 2019, and Pilot 3 began in October 2019. Pilot teachers responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. We revised all modules between each pilot group and used what we learned to inform our development of later modules within each pilot. For example, we applied what we learned from testing Module 3 with Pilot 1 to the development of Module 3 for Pilots 2, and also applied what we learned from Module 3 with Pilot 1 to the development of Module 7 for Pilot 1. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. We called them crux questions because they revealed teachers’ uncertainty and deepened learning during the discussion. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of covid-19, online PD has taken on new urgency. NARST members will gain insight into the translation of an effective face-to-face PD model to an online environment. 
    more » « less
  3. null (Ed.)
    The Covid-19 pandemic has offered new challenges and opportunities for teaching and research. It has forced constraints on in-person gathering of researchers, teachers, and students, and conversely, has also opened doors to creative instructional design. This paper describes a novel approach to designing an online, synchronous teacher professional development (PD) and curriculum co-design experience. It shares our work in bringing together high school teachers and researchers in four US states. The teachers participated in a 3-week summer PD on ideas of Distributed Computing and how to teach this advanced topic to high school students using NetsBlox, an extension of the Snap! block-based programming environment. The goal of the PD was to prepare teachers to engage in collaborative co-design of a 9-week curricular module for use in classrooms and schools. Between their own training and the co-design process, teachers co-taught a group of high school students enrolled in a remote summer internship at a university in North Carolina to pilot the learned units and leverage ideas from their teaching experience for subsequent curricular co-design. Formative and summative feedback from teachers suggest that this PD model was successful in meeting desired outcomes. Our generalizable FIRST principles—Flexibility, Innovativeness, Responsiveness (and Respect), Supports, and Teamwork (collaboration)—that helped make this unique PD successful, can help guide future CS teacher PD designs. 
    more » « less
  4. Biologically inspired design has become increasingly common in graduate and undergraduate engineering programs, consistent with an expanding emphasis by professional engineering societies on cross-disciplinary critical thinking skills and adaptive and sustainable design. However, bio-inspired engineering is less common in K-12 education. In 2019, the NSF funded a K-12 project entitled Biologically Inspired Design for Engineering Education (BIRDEE), to create socially relevant, accessible, and highly contextualized high school engineering curricula focusing on bio-inspired design. Studies have shown that women and underrepresented minorities are drawn to curricula, courses, and instructional strategies that are integrated, emphasize systems thinking, and facilitate connection building across courses or disciplines. The BIRDEE project also seeks to interest high school girls in engineering by providing curricula that incorporate humanistic, bio-inspired engineering with a focus on sustainable and authentic design contexts. BIRDEE curricula integrate bio-inspired design into the engineering design process by leveraging design tools that facilitate the application of biological concepts to design challenges. This provides a conceptual framework enabling students to systematically define a design problem, resulting in better, more well-rounded problem specifications. The professional development (PD) for the participating teachers include six-week-long summer internships in university research laboratories focused on biology and bio-inspired design. The goal of these internships is to improve engineering teachers’ knowledge of bio-inspired design by partnering with cutting-edge engineers and scientists to study animal features and behaviors and their applications to engineering design. However, due to COVID-19 and research lab closures in the summer of 2020, the research team had to transfer the summer PD experience to an online setting. An asynchronous, quasi-facilitated online course was developed and delivered to teachers over six weeks. In this paper, we will discuss online pedagogical approaches to experiential learning, teaching bio-inspired design concepts, and the integration of these approaches in the engineering design process. Central to the online PD design and function of each course was the use of inquiry, experiential and highly-collaborative learning strategies. Preliminary results show that teachers appreciated the aspects of the summer PD that included exploration, such as during the “Found Object” activity, and the process of building a prototype. These activities represented experiential learning opportunities where teachers were able to learn by doing. It was noted throughout the focus group discussions that such opportunities were appreciated by participating teachers. Teachers indicated that the experiential learning components of the PD allowed them to do something outside of their comfort zone, inspired them to do research that they would not have done outside of this experience, and allowed them to “be in the student's seat and get hands-on application”. By participating in these experiential learning opportunities, teachers were also able to better understand how the BIRDEE curriculum may impact students’ learning in their classrooms 
    more » « less
  5. Langran, E. ; Christensen, P. ; Sanson, J. (Ed.)
    The use of technology has positively impacted instruction in math and science, including instruction for students with significant cognitive disabilities (SCD). Additionally, virtual reality (VR) technology has been used for students with SCD and has resulted in positive outcomes. However, it has not been widely adapted to teach science concepts to students with SCD, and part of that is the teacher's lack of understanding and technical knowledge of technology. This narrative case study aimed to describe the teachers of students with SCD’s knowledge, attitudes, and instructional practices as they engage in professional development and the use of VR in the classroom. To collect data, the researcher used interviews, virtual reality training, PD and classroom observations, and document analysis. The study showed that prior to this research, teachers did not use virtual reality in the classroom. They felt excited about getting trained on it and anxious in using it due to the spectrum of students’ cognitive abilities. Although they liked to use VR, they pointed out that “time to develop and/ or implement the technology in the classroom” was the biggest constraint. The teachers wanted to use VR to reinforce the concepts taught in the classroom. In conclusion, the teachers' professional development on virtual reality has allowed them opportunities to understand VR use in instruction and express their perceptions about it. 
    more » « less