Abstract Heterogeneity in brain activity can give rise to heterogeneity in behavior, which in turn comprises our distinctive characteristics as individuals. Studying the path from brain to behavior, however, often requires making assumptions about how similarity in behavior scales with similarity in brain activity. Here, we expand upon recent work (Finn et al., 2020) which proposes a theoretical framework for testing the validity of such assumptions. Using intersubject representational similarity analysis in two independent movie-watching functional MRI (fMRI) datasets, we probe how brain-behavior relationships vary as a function of behavioral domain and participant sample. We find evidence that, in some cases, the neural similarity of two individuals is not correlated with behavioral similarity. Rather, individuals with higher behavioral scores are more similar to other high scorers whereas individuals with lower behavioral scores are dissimilar from everyone else. Ultimately, our findings motivate a more extensive investigation of both the structure of brain-behavior relationships and the tacit assumption that people who behave similarly will demonstrate shared patterns of brain activity.
more »
« less
This content will become publicly available on December 1, 2025
Multimodal single-neuron, intracranial EEG, and fMRI brain responses during movie watching in human patients
Abstract We present a multimodal dataset of intracranial recordings, fMRI, and eye tracking in 20 participants during movie watching. Recordings consist of single neurons, local field potential, and intracranial EEG activity acquired from depth electrodes targeting the amygdala, hippocampus, and medial frontal cortex implanted for monitoring of epileptic seizures. Participants watched an 8-min long excerpt from the video “Bang! You’re Dead” and performed a recognition memory test for movie content. 3 T fMRI activity was recorded prior to surgery in 11 of these participants while performing the same task. This NWB- and BIDS-formatted dataset includes spike times, field potential activity, behavior, eye tracking, electrode locations, demographics, and functional and structural MRI scans. For technical validation, we provide signal quality metrics, assess eye tracking quality, behavior, the tuning of cells and high-frequency broadband power field potentials to familiarity and event boundaries, and show brain-wide inter-subject correlations for fMRI. This dataset will facilitate the investigation of brain activity during movie watching, recognition memory, and the neural basis of the fMRI-BOLD signal.
more »
« less
- Award ID(s):
- 2219800
- PAR ID:
- 10537020
- Publisher / Repository:
- Nature press
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: Researchers have recently started to validate decades-old program-comprehension models using functional magnetic resonance imaging (fMRI). While fMRI helps us to understand neural correlates of cognitive processes during program comprehension, its comparatively low temporal resolution (i.e., seconds) cannot capture fast cognitive subprocesses (i.e., milliseconds). Aims: To increase the explanatory power of fMRI measurement of programmers, we are exploring in this methodological paper the feasibility of adding simultaneous eye tracking to fMRI measurement. By developing a method to observe programmers with two complementary measures, we aim at obtaining a more comprehensive understanding of program comprehension. Method: We conducted a controlled fMRI experiment of 22 student participants with simultaneous eye tracking. Results: We have been able to successfully capture fMRI and eye-tracking data, although with limitations regarding partial data loss and spatial imprecision. The biggest issue that we experienced is the partial loss of data: for only 10 participants, we could collect a complete set of high-precision eye-tracking data. Since some participants of fMRI studies show excessive head motion, the proportion of full and high-quality data on fMRI and eye tracking is rather low. Still, the remaining data allowed us to confirm our prior hypothesis of semantic recall during program comprehension, which was not possible with fMRI alone. Conclusions: Simultaneous measurement of program comprehension with fMRI and eye tracking is promising, but with limitations. By adding simultaneous eye tracking to our fMRI study framework, we can conduct more fine-grained fMRI analyses, which in turn helps us to understand programmer behavior better.more » « less
-
null (Ed.)Abstract Naturalistic stimuli evoke strong, consistent, and information-rich patterns of brain activity, and engage large extents of the human brain. They allow researchers to compare highly similar brain responses across subjects, and to study how complex representations are encoded in brain activity. Here, we describe and share a dataset where 25 subjects watched part of the feature film “The Grand Budapest Hotel” by Wes Anderson. The movie has a large cast with many famous actors. Throughout the story, the camera shots highlight faces and expressions, which are fundamental to understand the complex narrative of the movie. This movie was chosen to sample brain activity specifically related to social interactions and face processing. This dataset provides researchers with fMRI data that can be used to explore social cognitive processes and face processing, adding to the existing neuroimaging datasets that sample brain activity with naturalistic movies.more » « less
-
Abstract Our continuous visual experience in daily life is dominated by change. Previous research has focused on visual change due to stimulus motion, eye movements or unfolding events, but not their combined impact across the brain, or their interactions with semantic novelty. We investigate the neural responses to these sources of novelty during film viewing. We analyzed intracranial recordings in humans across 6328 electrodes from 23 individuals. Responses associated with saccades and film cuts were dominant across the entire brain. Film cuts at semantic event boundaries were particularly effective in the temporal and medial temporal lobe. Saccades to visual targets with high visual novelty were also associated with strong neural responses. Specific locations in higher-order association areas showed selectivity to either high or low-novelty saccades. We conclude that neural activity associated with film cuts and eye movements is widespread across the brain and is modulated by semantic novelty.more » « less
-
Abstract This manuscript presents GazeBase, a large-scale longitudinal dataset containing 12,334 monocular eye-movement recordings captured from 322 college-aged participants. Participants completed a battery of seven tasks in two contiguous sessions during each round of recording, including a – (1) fixation task, (2) horizontal saccade task, (3) random oblique saccade task, (4) reading task, (5/6) free viewing of cinematic video task, and (7) gaze-driven gaming task. Nine rounds of recording were conducted over a 37 month period, with participants in each subsequent round recruited exclusively from prior rounds. All data was collected using an EyeLink 1000 eye tracker at a 1,000 Hz sampling rate, with a calibration and validation protocol performed before each task to ensure data quality. Due to its large number of participants and longitudinal nature, GazeBase is well suited for exploring research hypotheses in eye movement biometrics, along with other applications applying machine learning to eye movement signal analysis. Classification labels produced by the instrument’s real-time parser are provided for a subset of GazeBase, along with pupil area.more » « less