Abstract Dinitrogen (N₂) fixation by diazotrophs supports ocean productivity. Diazotrophs include photoautotrophic cyanobacteria, non-cyanobacterial diazotrophs (NCDs), and the recently discovered N2-fixing haptophyte. While NCDs are ubiquitous in the ocean, their ecology and metabolism remain largely unknown. Unlike cyanobacterial diazotrophs and the haptophyte, NCDs are primarily heterotrophic and depend on dissolved organic matter (DOM) for carbon and energy. However, conventional DOM amendment incubations do not allow discerning how different diazotrophs use DOM molecules, limiting our knowledge on DOM–diazotroph interactions. To identify diazotrophs using DOM, we amended North Pacific microbial communities with 13C-labeled DOM from phytoplankton cultures that was molecularly characterized, revealing the dominance of nitrogen-rich compounds. After DOM additions, we observed a community shift from cyanobacterial diazotrophs like Crocosphaera and Trichodesmium to NCDs at stations where the N2-fixing haptophyte abundance was relatively low. Through DNA stable isotope probing and gene sequencing, we identified diverse diazotrophs capable of taking up DOM. Our findings highlight unexpected DOM uptake by the haptophyte’s nitroplast, changes in community structure, and previously unrecognized osmotrophic behavior in NCDs, shaped by local biogeochemical conditions.
more »
« less
Diversity in the utilization of different molecular classes of dissolved organic matter by heterotrophic marine bacteria
ABSTRACT Heterotrophic marine bacteria utilize and recycle dissolved organic matter (DOM), impacting biogeochemical cycles. It is currently unclear to what extent distinct DOM components can be used by different heterotrophic clades. Here, we ask how a natural microbial community from the Eastern Mediterranean Sea (EMS) responds to different molecular classes of DOM (peptides, amino acids, amino sugars, disaccharides, monosaccharides, and organic acids) comprising much of the biomass of living organisms. Bulk bacterial activity increased after 24 h for all treatments relative to the control, while glucose and ATP uptake decreased or remained unchanged. Moreover, while the per-cell uptake rate of glucose and ATP decreased, that of Leucin significantly increased for amino acids, reflecting their importance as common metabolic currencies in the marine environment.Pseudoalteromonadaceaedominated the peptides treatment, while differentVibrionaceaestrains became dominant in response to amino acids and amino sugars.Marinomonadaceaegrew well on organic acids, andAlteromonadaseaeon disaccharides. A comparison with a recent laboratory-based study reveals similar peptide preferences forPseudoalteromonadaceae, whileAlteromonadaceae, for example, grew well in the lab on many substrates but dominated in seawater samples only when disaccharides were added. We further demonstrate a potential correlation between the genetic capacity for degrading amino sugars and the dominance of specific clades in these treatments. These results highlight the diversity in DOM utilization among heterotrophic bacteria and complexities in the response of natural communities. IMPORTANCEA major goal of microbial ecology is to predict the dynamics of natural communities based on the identity of the organisms, their physiological traits, and their genomes. Our results show that several clades of heterotrophic bacteria each grow in response to one or more specific classes of organic matter. For some clades, but not others, growth in a complex community is similar to that of isolated strains in laboratory monoculture. Additionally, by measuring how the entire community responds to various classes of organic matter, we show that these results are ecologically relevant, and propose that some of these resources are utilized through common uptake pathways. Tracing the path between different resources to the specific microbes that utilize them, and identifying commonalities and differences between different natural communities and between them and lab cultures, is an important step toward understanding microbial community dynamics and predicting how communities will respond to perturbations.
more »
« less
- Award ID(s):
- 2246707
- PAR ID:
- 10537037
- Editor(s):
- Biddle, Jennifer F
- Publisher / Repository:
- ASM
- Date Published:
- Journal Name:
- Applied and Environmental Microbiology
- Volume:
- 90
- Issue:
- 7
- ISSN:
- 0099-2240
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Meyer, Julie L (Ed.)High molecular weight (HMW; >1 kDa) carbohydrates are a major component of dissolved organic matter (DOM) released by benthic primary producers. Despite shifts from coral to algae dominance on many reefs, little is known about the effects of exuded carbohydrates on bacterioplankton communities in reef waters. We compared the monosaccharide composition of HMW carbohydrates exuded by hard corals and brown macroalgae and investigated the response of the bacterioplankton community of an algae-dominated Caribbean reef to the respective HMW fractions. HMW coral exudates were compositionally distinct from the ambient, algae-dominated reef waters and similar to coral mucus (high in arabinose). They further selected for opportunistic bacterioplankton taxa commonly associated with coral stress (i.e.,Rhodobacteraceae,Phycisphaeraceae,Vibrionaceae, andFlavobacteriales) and significantly increased the predicted energy-, amino acid-, and carbohydrate-metabolism by 28%, 44%, and 111%, respectively. In contrast, HMW carbohydrates exuded by algae were similar to those in algae tissue extracts and reef water (high in fucose) and did not significantly alter the composition and predicted metabolism of the bacterioplankton community. These results confirm earlier findings of coral exudates supporting efficient trophic transfer, while algae exudates may have stimulated microbial respiration instead of biomass production, thereby supporting the microbialization of reefs. In contrast to previous studies, HMW coral and not algal exudates selected for opportunistic microbes, suggesting that a shift in the prevalent DOM composition and not the exudate type (i.e., coral vs algae)per se, may induce the rise of opportunistic microbial taxa. IMPORTANCEDissolved organic matter (DOM) released by benthic primary producers fuels coral reef food webs. Anthropogenic stressors cause shifts from coral to algae dominance on many reefs, and resulting alterations in the DOM pool can promote opportunistic microbes and potential coral pathogens in reef water. To better understand these DOM-induced effects on bacterioplankton communities, we compared the carbohydrate composition of coral- and macroalgae-DOM and analyzed the response of bacterioplankton from an algae-dominated reef to these DOM types. In line with the proposed microbialization of reefs, coral-DOM was efficiently utilized, promoting energy transfer to higher trophic levels, whereas macroalgae-DOM likely stimulated microbial respiration over biomass production. Contrary to earlier findings, coral- and not algal-DOM selected for opportunistic microbial taxa, indicating that a change in the prevalent DOM composition, and not DOM type, may promote the rise of opportunistic microbes. Presented results may also apply to other coastal marine ecosystems undergoing benthic community shifts.more » « less
-
Abstract The communities of bacteria that assemble around marine microphytoplankton are predictably dominated by Rhodobacterales, Flavobacteriales, and families within the Gammaproteobacteria. Yet whether this consistent ecological pattern reflects the result of resource-based niche partitioning or resource competition requires better knowledge of the metabolites linking microbial autotrophs and heterotrophs in the surface ocean. We characterized molecules targeted for uptake by three heterotrophic bacteria individually co-cultured with a marine diatom using two strategies that vetted the exometabolite pool for biological relevance by means of bacterial activity assays: expression of diagnostic genes and net drawdown of exometabolites, the latter detected with mass spectrometry and nuclear magnetic resonance using novel sample preparation approaches. Of the more than 36 organic molecules with evidence of bacterial uptake, 53% contained nitrogen (including nucleosides and amino acids), 11% were organic sulfur compounds (including dihydroxypropanesulfonate and dimethysulfoniopropionate), and 28% were components of polysaccharides (including chrysolaminarin, chitin, and alginate). Overlap in phytoplankton-derived metabolite use by bacteria in the absence of competition was low, and only guanosine, proline, and N-acetyl-d-glucosamine were predicted to be used by all three. Exometabolite uptake pattern points to a key role for ecological resource partitioning in the assembly marine bacterial communities transforming recent photosynthate.more » « less
-
The Pacific Ocean constitutes about half of the global oceans and thus microbial processes in this ocean have a large impact on global elemental cycles. Despite several intensely studied regions large areas are still greatly understudied regarding microbial activities, organic matter cycling and biogeography. Refined information about these features is most important to better understand the significance of this ocean for global biogeochemical and elemental cycles. Therefore we investigated a suite of microbial and geochemical variables along a transect from the subantarctic to the subarctic Pacific in the upper 200 m of the water column. The aim was to quantify rates of organic matter processing, identify potential controlling factors and prokaryotic key players. The assessed variables included abundance of heterotrophic prokaryotes and cyanobacteria, heterotrophic prokaryotic production (HPP), turnover rate constants of amino acids, glucose, and acetate, leucine aminopeptidase and β-glucosidase activities, and the composition of the bacterial community by fluorescence in situ hybridization (FISH). The additional quantification of nitrate, dissolved amino acids and carbohydrates, chlorophyll a , particulate organic carbon and nitrogen (POC, PON) provided a rich environmental context. The oligotrophic gyres exhibited the lowest prokaryotic abundances, rates of HPP and substrate turnover. Low nucleic acid prokaryotes dominated in these gyres, whereas in temperate and subpolar regions further north and south, high nucleic acid prokaryotes dominated. Turnover rate constants of glucose and acetate, as well as leucine aminopeptidase activity, increased from (sub)tropical toward the subpolar regions. In contrast, HPP and bulk growth rates were highest near the equatorial upwelling and lowest in the central gyres and subpolar regions. The SAR11 clade, the Roseobacter group and Flavobacteria constituted the majority of the prokaryotic communities. Vertical profiles of the biogeochemical and microbial variables markedly differed among the different regions and showed close covariations of the microbial variables and chlorophyll a , POC and PON. The results show that hydrographic, microbial, and biogeochemical properties exhibited distinct patterns reflecting the biogeographic provinces along the transect. The microbial variables assessed contribute to a better and refined understanding of the scales of microbial organic matter processing in large areas of the epipelagic Pacific beyond its well-studied regions.more » « less
-
In barren alpine catchments of the Colorado Rocky Mountains, microorganisms are typically carbon (C)-limited, and C-limitation can influence critical heterotrophic processes, such as denitrification. In these remote locations, organic matter deposited during dust intrusion events and other forms of aerosol deposition may be an important C source for heterotrophs; however, little is known regarding the biodegradability of atmospherically deposited organic matter. This study evaluated the extent to which organic matter in Holocene dust and other types of atmospheric deposition in the Colorado Rocky Mountains could support metabolic activity and be biodegraded by alpine bacteria. Microplate bioassays revealed that all atmospheric deposition samples were able to activate microbial metabolism. Decreases in dissolved organic carbon (DOC) concentrations over time in biodegradability incubations reflect the presence of two pools of dissolved organic matter (DOM), a rapidly decaying pool with rate constants in the range of 0.0130–0.039 d–1and a slowly decaying pool with rate constants in the range of 0.0008–0.009 d–1. Changes in the fluorescence excitation-emission matrix of solutions evaluated over time indicated a transformation of organic matter by bacteria resulting in a more humic-like fluorescence signature. Fluorescence spectroscopic analyses, therefore, suggest that the degradation of non-fluorescent DOM in glutamate and dust-derived C sources by bacteria results in the production of fluorescent DOM.more » « less
An official website of the United States government

