skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Upwelling in Cyclonic and Anticyclonic Eddies at the Middle Atlantic Bight Shelf‐Break Front
Abstract Despite the ubiquity of eddies at the Mid‐Atlantic Bight shelf‐break front, direct observations of frontal eddies at the shelf‐break front are historically sparse and their biological impact is mostly unknown. This study combines high resolution physical and biological snapshots of two frontal eddies with an idealized 3‐D regional model to investigate eddy formation, kinematics, upwelling patterns, and biological impacts. During May 2019, two eddies were observed in situ at the shelf‐break front. Each eddy showed evidence of nutrient and chlorophyll enhancement despite rotating in opposite directions and having different physical characteristics. Our results suggest that cyclonic eddies form as shelf waters are advected offshore and slope waters are advected shoreward, forming two filaments that spiral inward until sufficient water is entrained. Rising isohalines and upwelled slope water dye tracer within the model suggest that upwelling coincided with eddy formation and persisted for the duration of the eddy. In contrast, anticyclonic eddies form within troughs of the meandering shelf‐break front, with amplified frontal meanders creating recirculating flow. Upwelling of subsurface shelf water occurs in the form of detached cold pool waters during the formation of the anticyclonic eddies. The stability properties of each eddy type were estimated via the Burger number and suggest different ratios of baroclinic versus barotropic contributions to frontal eddy formation. Our observations and model results indicate that both eddy types may persist for more than a month and upwelling in both eddy types may have significant impacts on biological productivity of the shelf break.  more » « less
Award ID(s):
2322676 1657803
PAR ID:
10537105
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
8
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elsevier Publishing Company (Ed.)
    Loop Current Frontal Eddies (LCFEs) are known to intensify and assist in the Loop Current (LC) eddy shedding. In addition to interacting with the LC, these eddies also modify the circulation in the eastern Gulf of Mexico by attracting water and passive tracers such as chlorophyll, Mississippi freshwater, and pollutants to the LC-LCFE front. During the 2010 Deepwater Horizon oil spill, part of the oil was entrained not only in the LC-LCFE front but also inside an LCFE, where it remained for weeks. This study assesses the ability of the LCFEs to transport water and passive tracers without exchange with the exterior (i.e., Lagrangian coherence) using altimetry and a high-resolution model. The following open questions are answered: (1) How long can the LCFEs remain Lagrangian coherent at and below the surface? (2) What is the source of water for the formation of LCFEs? (3) Can the formation of Lagrangian coherent LCFEs attract shelf water? Strong frontal eddies leading to LC eddy shedding are investigated using a 1-km resolution model for the Gulf of Mexico and altimetry. The results show that LCFEs are composed of waters originating from the outer band of the LC front, the region north of the LC, and the western West Florida Shelf and Mississippi/Alabama/Florida shelf, and potentially drive cross-shelf exchange of particles, water properties, and nutrients. At depth (≈180 m), most LCFE water comes from the outer band of the LC front in the form of smaller frontal eddies. Once formed, LCFEs can transport water and passive tracers in their interior without exchange with the exterior for weeks: these eddies remained Lagrangian coherent for up to 25 days in the altimetry dataset and 18 days at the surface and 29 days at depth (≈180 m) in the simulation. LCFE can remain Lagrangian coherent up to a depth of ≈ 560 m. Additional analyses show that the LCFE involved in the Deepwater Horizon oil spill formed from water near the oil rig location, in agreement with previous studies. Temperature-salinity diagrams from a high-resolution model and aircraft expendable profilers show that LCFEs are composed of Gulf of Mexico water as opposed to LC water. Therefore, LCFE formation and propagation actively modify the surrounding circulation and affect the evolution of the flow and the transport of oil and other passive tracers in the Eastern Gulf of Mexico. 
    more » « less
  2. Abstract Locally enhanced biological production and increased carbon export are persistent features at oceanic density fronts. Studies often assume biological properties are uniform along fronts or hypothesize that along‐ and across‐front gradients reflect physical‐biological processes occurring in the front. However, the residence times of waters in fronts are often shorter than biological response times. Thus, an alternate—often untested—hypothesis is that observed biological patchiness originates upstream of a front. To test these two hypotheses, we explore an eddy‐associated front in the California Current System sampled during two surveys, separated by 3 weeks. Patches of high phytoplankton biomass were found at the northern ends of both surveys, and phytoplankton biomass decreased along the front. While these patches occurred in similar locations, it was unclear whether the same patch was sampled twice, or whether the two patches were different. Using an advection‐reaction framework combined with field and satellite data, we found that variations in along‐front gradients in dissolved oxygen, particle biovolume, and salinity support the conclusion that the two phytoplankton patches were different. They were only coincidentally sampled in similar locations. Backward‐ and forward‐in‐time tracking of water parcels showed that these phytoplankton patches had distinct origins, associated with specific, strong coastal upwelling pulses upstream of the front. Phytoplankton grew in these recently upwelled waters as they advected into and along the frontal system. By considering both local and upstream physical‐biological forcings, this approach enables better characterizations of critical physical and biogeochemical processes that occur at fronts across spatial and temporal scales. 
    more » « less
  3. Abstract The Mid‐Atlantic Bight (MAB) hosts a large and productive marine ecosystem supported by high phytoplankton concentrations. Enhanced surface chlorophyll concentrations at the MAB shelf‐break front have been detected in synoptic measurements, yet this feature is not present in seasonal means. To understand why, we assess the conditions associated with enhanced surface chlorophyll at the shelf break. We employ in‐situ and remote sensing data, and a 2‐dimensional model to show that Ekman restratification driven by upfront winds drives ephemerally enhanced chlorophyll concentrations at the shelf‐break front in spring. Using 8‐day composite satellite‐measured surface chlorophyll concentration data from 2003–2020, we constructed a daily running mean (DRM) climatology of the cross‐shelf chlorophyll distribution for the northern MAB region. While the frontal enhancement of chlorophyll is apparent in the DRM climatology, it is not captured in the seasonal climatology due to its short duration of less than a week. In‐situ measurements of the frontal chlorophyll enhancement reveal that chlorophyll is highest in spring when the shelf‐break front slumps offshore from its steep wintertime position causing restratification in the upper part of the water column. Several restratification mechanisms are possible, but the first day of enhanced chlorophyll at the shelf break corresponds to increasing upfront winds, suggesting that the frontal restratification is driven by offshore Ekman transport of the shelf water over the denser slope water. The 2‐dimensional model shows that upfront winds can indeed drive Ekman restratification and alleviate light limitation of phytoplankton growth at the shelf‐break front. 
    more » « less
  4. Two kinds of Mobile Assets survey the area in and around the array of moorings at the Coastal Pioneer Array – Coastal Gliders and Coastal Autonomous Underwater Vehicles (AUVs).\n\nAn array of 6 Coastal Gliders (Teledyne-Webb Slocum Gliders) sample large, mesoscale features through a broad region (130 x 185 km) of the outer continental shelf between the shelf break and the Gulf Stream. The role of these gliders in monitoring this broader area is to resolve rings, eddies and meanders from the Gulf Stream as they impinge on the shelf break front. These Teledyne-Webb Slocum Gliders fly through the water column along saw-tooth paths, penetrating the sea surface and diving down to a maximum depth of 1000 meters.\n\nAn array of two Coastal AUVs (REMUS-600 AUVs) travel along transects across the shelf-break frontal system extending beyond the mooring array, covering an area approximately 80 x 100 km in size centered on the array of moorings. The primary role of the AUVs is to resolve cross- and along-front “eddy fluxes” due to frontal instabilities, wind forcing, and mesoscale variability. These AUVs travel along saw-toothed transects, penetrating the sea surface and diving down to a maximum depth of 600 meters. 
    more » « less
  5. Abstract Marine heatwave (MHW) events have led to acute decreases in primary production and phytoplankton biomass in the surface ocean, particularly at the mid latitudes. In the Northeast Pacific, these anomalous events have occasionally encroached onto the Oregon shelf during the ecologically important summer upwelling season. Increased temperatures reduce the density of offshore waters, and as a MHW is present offshore, coincident downwelling or relaxation may transport warmer waters inshore. As an event persists, new upwelling‐driven blooms may be prevented from extending further offshore. This work focuses on MHWs and coincident events that occurred off Oregon during the summers of 2015–2023. In late summer 2015 and 2019, both documented MHW years, coastal phytoplankton biomass extended on average 6 and 9 km offshore of the shelf break along the Newport Hydrographic Line, respectively. During years not influenced by anomalous warming, coastal biomass extended over 34 km offshore of the shelf break. Reduced biomass also occurs with reduced upwelling transport and nutrient flux during these anomalous warm periods. However, the enhanced front associated with a MHW aids in the compression of phytoplankton closer to shore. Over shorter events, heatwaves propagating far inshore also coincide with reduced chlorophyllaand sea‐surface density at select cross‐shelf locations, further supporting a physical displacement mechanism. Paired with the physiological impacts on communities, heatwave‐reinforced physical confinement of blooms over the inner‐shelf may have a measurable effect on the gravitational flux and alongshore transport of particulate organic carbon. 
    more » « less