Abstract As future decision-makers, students must develop interdisciplinary, systems thinking skills to make effective management decisions; however, systems thinking remains challenging for many students. Here, we use the Food-Energy-Water (FEW) Nexus as a framework to examine how drawings can help students cultivate systems thinking skills. Drawings can be tools to make implicit mental models of systems connections explicit for instructors to better comprehend student learning. Our goal was to understand how drawing can help students make connections across systems compared to using only verbal explanations. In 2021, we interviewed undergraduates, asking them to draw and verbally explain the FEW Nexus. Analysis revealed that student drawings showed an increase in the number of connections that half of students could describe when compared to verbal-only explanations. Instructors may benefit from this study by recognizing areas where students might struggle to understand FEW Nexus connections, where additional course emphasis is needed, and how drawings can help assess student learning.
more »
« less
Drawing and Talk Reveal Dynamic Shifts in Students' Developing Knowledge of Complex Systems
Abstract: Complex systems pose learning challenges because students must coordinate individual entities with their aggregate system properties. We sought to better understand this challenge by assessing students’ drawings and speech after they learned with a computational environment (NetLogo). We assessed how students represented their knowledge of complex systems and found that students transitioned from describing key entities in speech to representing both entities and their physical properties in their drawings.
more »
« less
- Award ID(s):
- 2202468
- PAR ID:
- 10537146
- Editor(s):
- NA
- Publisher / Repository:
- ISLS
- Date Published:
- Page Range / eLocation ID:
- 2123 to 2124
- Subject(s) / Keyword(s):
- Drawing Complex Systems NetLogo
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lindgren, R; Asino, T; Kyza, E A; Looi, C-K; Keifert, D T; Suarez, E (Ed.)Gestures play a key role for physicists and physics students in representing physics entities, processes, and systems. One affordance of gesture is the ability to laminate or layer together representations of concrete physical features (e.g., objects and their interactions) and symbolic representations (e.g., coordinate systems) to make sense of and model physical scenarios. Using interaction analysis, we illustrate how students can laminate these different layers of abstraction together in gesture to generate complex explanations to solve physics problems. We argue that laminating different layers of abstraction (both the symbolic and concrete) constitute a key form of representational competence in physics.more » « less
-
How do children’s visual concepts change across childhood, and how might these changes be reflected in their drawings? Here we investigate developmental changes in children’s ability to emphasize the relevant visual distinctions between object categories in their drawings. We collected over 13K drawings from children aged 2-10 years via a free-standing drawing station in a children’s museum. We hypothesized that older children would produce more recognizable drawings, and that this gain in recognizability would not be entirely explained by concurrent development in visuomotor control. To measure recognizability, we applied a pretrained deep convolutional neural network model to extract a high-level feature representation of all drawings, and then trained a multi-way linear classifier on these features. To measure visuomotor control, we developed an automated procedure to measure their ability to accurately trace complex shapes. We found consistent gains in the recognizability of drawings across ages that were not fully explained by children’s ability to accurately trace complex shapes. Furthermore, these gains were accompanied by an increase in how distinct different object categories were in feature space. Overall, these results demonstrate that children’s drawings include more distinctive visual features as they grow older.more » « less
-
Neumann, M.; Virtue, P.; Guerzhoy, M. (Ed.)Children of all ages interact with speech recognition systems but are largely unaware of how they work. Teaching K-12 students to investigate how these systems employ phonological, syntactic, semantic, and cultural knowledge to resolve ambiguities in the audio signal can provide them a window on complex AI decision-making and also help them appreciate the richness and complexity of human language. We describe a browser-based tool for exploring the Google Web Speech API and a series of experiments students can engage in to measure what the service knows about language and the types of biases it exhibits. Middle school students taking an introductory AI elective were able to use the tool to explore Google’s knowledge of homophones and its ability to exploit context to disambiguate them. Older students could potentially conduct more comprehensive investigations, which we lay out here. This approach to investigating the power and limitations of speech technology through carefully designed experiments can also be applied to other AI application areas, such as face detection, object recognition, machine translation, or question answering.more » « less
-
Children of all ages interact with speech recognition systems but are largely unaware of how they work. Teaching K-12 students to investigate how these systems employ phonolog- ical, syntactic, semantic, and cultural knowledge to resolve ambiguities in the audio signal can provide them a window on complex AI decision-making and also help them appreciate the richness and complexity of human language. We describe a browser-based tool for exploring the Google Web Speech API and a series of experiments students can engage in to measure what the service knows about language and the types of biases it exhibits. Middle school students taking an introductory AI elective were able to use the tool to explore Google’s knowledge of homophones and its ability to exploit context to disambiguate them. Older students could potentially conduct more comprehensive investigations, which we lay out here. This approach to investigating the power and limitations of speech technology through carefully designed experiments can also be applied to other AI application areas, such as face detection, object recognition, machine translation, or question answering.more » « less
An official website of the United States government

