Abstract Fluid power systems can be expensive and difficult to access, making it challenging to provide hands-on training. This work discusses the incorporation of Mixed Reality (MR) technology in Fluid Power applications for providing a virtual training environment that simulates the behavior of fluid power systems, allowing users to receive immediate feedback on the system’s performance. Mixed reality is a digitized-based technology that integrates a virtual environment with our real world by utilizing real-world sensor data and computer models. This technology allows running simulations that examine the complexity of highly-coupled systems, producing new digital environments where physical and digital elements can interact in real-time. With all these features, MR technology can be a practical training tool for running virtual simulations that mimic real-life industry settings. It can extend the user with a virtual training environment, thus preparing the next generation of fluid power engineers and specialists. Throughout this work, we present the development and capabilities of a digitized virtual copy of a hydraulic excavator’s arm in an MR environment as a proof of concept. The MR arm module is developed and deployed using Microsoft’s Mixed Reality Tool Kit (MRTK) for Unity through HoloLens 2 MR headset. The MR development involves generating virtual copies of the mechanical and hydraulic subsystems, conducting the virtual assembly, and creating a user interface in the MR environment to visualize and interact with the model. The developed MR module enables visualizing the excavator’s internal structure, conducting the virtual assembly, and running virtual simulations, all of which assist in training future fluid power operators. It is an effective training tool that helps train junior engineers/technicians, cutting down on cost and time.
more »
« less
Mixed Reality: A Tool for Investigating the Complex Design and Mechanisms of a Mechanically Actuated Digital Pump
Digital hydraulics is a discrete technology that integrates advanced dynamic system controls, digital electronics, and machine learning to enhance fluid power systems’ performance, overall efficiency, and controllability. A mechanically actuated inline three-piston variable displacement digital pump was previously proposed and designed. The inline three-piston pump incorporates complex mechanical and hydraulic subsystems and highly coupled mechanisms. The complexity of the utilized subsystems poses challenges when assessing the viability of the conceptual design. Therefore, this work focuses on designing, developing, and implementing a collaborative virtual platform involving a digitized module showcasing the internal mechanical structure of the digital pump utilizing mixed reality (MR) technology. MR technology is acknowledged as the forthcoming evolution of the human–machine interface in the real–virtual environment utilizing computers and wearables. This technology permits running simulations that examine the complexity of highly coupled systems, like the digital pump, where understanding the physical phenomenon is far too intricate. The developed MR platform permits multiple users to collaborate in a synchronized immersive MR environment to study and analyze the applicability of the pump’s design and the adequacy of the operated mechanisms. The collaborative MR platform was designed and developed on the Unity game engine, employing Microsoft Azure and Photon Unity Networking to set up the synchronized MR environment. The platform involves a fully interactive virtual module on the digital pump design, developed in multiple stages using Microsoft’s Mixed Reality Tool Kit (MRTK) for Unity and deployed in the synchronized MR environment through a HoloLens 2 MR headset. A research study involving 71 participants was carried out at Purdue University. The study’s objective was to explore the impact of the collaborative MR environment on understanding the complexity and operation of the digital pump. It also sought to assess the effectiveness of MR in facilitating collaboration among fluid power stakeholders in a synchronized digital reality setting to study, diagnose, and control their complex systems. Surveys were designed and completed by all 71 participants after experiencing the MR platform. The results indicate that approximately 75% of the participants expressed positive attitudes toward their overall MR platform experience, with particular appreciation for its immersive nature and the synchronized collaborative environment it provided. More than 70% of the participants agreed that the pump’s collaborative MR platform was essential for studying and understanding the complexity and intricacy of the digital pump’s mechanical structure. Overall, the results demonstrate that the MR platform effectively facilitates the visualization of the complex pump’s internal structure, inspection of the assembly of each of the involved subsystems, and testing the applicability of the complicated mechanisms.
more »
« less
- Award ID(s):
- 2204919
- PAR ID:
- 10537268
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Actuators
- Volume:
- 12
- Issue:
- 11
- ISSN:
- 2076-0825
- Page Range / eLocation ID:
- 419
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Collaborative virtual assembly environment is a vital computer-aided design tool in product design and can be used as a learning and training tool. It helps in supporting complex product design by enabling designers to collaborate and communicate with other designers involved in the product design. This paper proposes a collaborative virtual assembly environment built in two phases for the immersive and non-immersive environments. Phase one was developed in Unity 3D using Virtual Reality Toolkit (VRTK) and Steam VR. Whereas, phase two was built using Vizard and Vizible. This work aims to allow scientists and engineers to discuss the concept design in a real-time VR environment so that they can interact with the objects and review their work before it is deployed. This paper proposes the system architecture and describes the design and implementation of a collaborative virtual assembly environment. The outcome of this work is to be able to resolve communication and interaction problems that arise during the concept-design phase.more » « less
-
During active shooter events or emergencies, the ability of security personnel to respond appropriately to the situation is driven by pre-existing knowledge and skills, but also depends upon their state of mind and familiarity with similar scenarios. Human behavior becomes unpredictable when it comes to making a decision in emergency situations. The cost and risk of determining these human behavior characteristics in emergency situations is very high. This paper presents an immersive collaborative virtual reality (VR) environment for performing virtual building evacuation drills and active shooter training scenarios using Oculus Rift head mounted displays. The collaborative immersive environment is implemented in Unity 3D and is based on run, hide, and fight mode for emergency response. The immersive collaborative VR environment also offers a unique method for training in emergencies for campus safety. The participant can enter the collaborative VR environment setup on the cloud and participate in the active shooter response training environment, which leads to considerable cost advantages over large-scale real-life exercises. A presence questionnaire in the user study was used to evaluate the effectiveness of our immersive training module. The results show that a majority of users agreed that their sense of presence was increased when using the immersive emergencymore » « less
-
This paper introduces the Intelligent Learning Platform for Robotics Operations (IL-PRO), a Virtual Reality (VR) system designed to enhance robotics training in the Architecture, Engineering, and Construction (AEC) industry. IL-PRO addresses the growing need for effective training methods as the AEC sector adopts robotic automation. The system integrates VR technology with game-assisted learning, combining online multimedia lessons for theory with immersive VR tasks for practical skills. Developed iteratively using Design-Based Research principles, IL-PRO incorporates realistic robot simulations and progressive task complexity. The VR environment, built in Unity, aims to enhance engagement, motor coordination, and spatial awareness in robotics training. While future goals include AI-driven personalized instruction, this work-in-progress focuses on VR curriculum development and implementation. The paper concludes by discussing future directions, including curriculum expansion and cross-institutional adoption, to establish new benchmarks in innovative robotics education for the AEC industry.more » « less
-
Abstract Recent immersive mixed reality (MR) and virtual reality (VR) displays enable users to use their hands to interact with both veridical and virtual environments simultaneously. Therefore, it becomes important to understand the performance of human hand-reaching movement in MR. Studies have shown that different virtual environment visualization modalities can affect point-to-point reaching performance using a stylus, but it is not yet known if these effects translate to direct human-hand interactions in mixed reality. This paper focuses on evaluating human point-to-point motor performance in MR and VR for both finger-pointing and cup-placement tasks. Six performance measures relevant to haptic interface design were measured for both tasks under several different visualization conditions (“MR with indicator,” “MR without indicator,” and “VR”) to determine what factors contribute to hand-reaching performance. A key finding was evidence of a trade-off between reaching “motion confidence” measures (indicated by throughput, number of corrective movements, and peak velocity) and “accuracy” measures (indicated by end-point error and initial movement error). Specifically, we observed that participants tended to be more confident in the “MR without Indicator” condition for finger-pointing tasks. These results contribute critical knowledge to inform the design of VR/MR interfaces based on the application's user performance requirements.more » « less
An official website of the United States government

