Abstract The development of electrochemical catalytic conversion of 5‐hydroxymethylfurfural (HMF) has recently gained attention as a potentially scalable approach for both oxidation and reduction processes yielding value‐added products. While the possibility of electrocatalytic HMF transformations has been demonstrated, this growing research area is in its initial stages. Additionally, its practical applications remain limited due to low catalytic activity and product selectivity. Understanding the catalytic processes and design of electrocatalysts are important in achieving a selective and complete conversion into the desired highly valuable products. In this Minireview, an overview of the most recent status, advances, and challenges of oxidation and reduction processes of HMF was provided. Discussion and summary of voltammetric studies and important reaction factors (e. g., catalyst type, electrode material) were included. Finally, biocatalysts (e. g., enzymes, whole cells) were introduced for HMF modification, and future opportunities to combine biocatalysts with electrochemical methods for the production of high‐value chemicals from HMF were discussed.
more »
« less
Electrochemical Modification of Polypeptides at Selenocysteine
Abstract Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e‐SE) platform for the efficient site‐selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions. The power of e‐SE is highlighted through late‐stage C‐terminal modification of the FDA‐approved cancer drug leuprolide and assembly of a library of anti‐HER2 affibody conjugates bearing complex cargoes. Following assembly by e‐SE, the utility of functionalized affibodies for in vitro imaging and targeting of HER2 positive breast and lung cancer cell lines is also demonstrated.
more »
« less
- Award ID(s):
- 1955876
- PAR ID:
- 10537275
- Publisher / Repository:
- GDCh
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 50
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background: We investigated the association between reproductive risk factors and breast cancer subtype in Black women. On the basis of the previous literature, we hypothesized that the relative prevalence of specific breast cancer subtypes might differ according to reproductive factors. Methods: We conducted a pooled analysis of 2,188 (591 premenopausal, 1,597 postmenopausal) Black women with a primary diagnosis of breast cancer from four studies in the southeastern United States. Breast cancers were classified by clinical subtype. Case-only polytomous logistic regression models were used to estimate ORs and 95% confidence intervals (CI) for HER2+ and triple-negative breast cancer (TNBC) status in relation to estrogen receptor–positive (ER+)/HER2− status (referent) for reproductive risk factors. Results: Relative to women who had ER+/HER2− tumors, women who were age 19–24 years at first birth (OR, 1.78; 95% CI, 1.22–2.59) were more likely to have TNBC. Parous women were less likely to be diagnosed with HER2+ breast cancer and more likely to be diagnosed with TNBC relative to ER+/HER2− breast cancer. Postmenopausal parous women who breastfed were less likely to have TNBC [OR, 0.65 (95% CI, 0.43–0.99)]. Conclusions: This large pooled study of Black women with breast cancer revealed etiologic heterogeneity among breast cancer subtypes. Impact: Black parous women who do not breastfeed are more likely to be diagnosed with TNBC, which has a worse prognosis, than with ER+/HER2− breast cancer.more » « less
-
Abstract Management of breast cancer in limited-resource settings is hindered by a lack of low-cost, logistically sustainable approaches toward molecular and cellular diagnostic pathology services that are needed to guide therapy. To address these limitations, we have developed a multimodal cellphone-based platform—the EpiView-D4—that can evaluate both cellular morphology and molecular expression of clinically relevant biomarkers directly from fine-needle aspiration (FNA) of breast tissue specimens within 1 h. The EpiView-D4 is comprised of two components: (1) an immunodiagnostic chip built upon a “non-fouling” polymer brush-coating (the “D4”) which quantifies expression of protein biomarkers directly from crude cell lysates, and (2) a custom cellphone-based optical microscope (“EpiView”) designed for imaging cytology preparations and D4 assay readout. As a proof-of-concept, we used the EpiView-D4 for assessment of human epidermal growth factor receptor-2 (HER2) expression and validated the performance using cancer cell lines, animal models, and human tissue specimens. We found that FNA cytology specimens (prepared in less than 5 min with rapid staining kits) imaged by the EpiView-D4 were adequate for assessment of lesional cellularity and tumor content. We also found our device could reliably distinguish between HER2 expression levels across multiple different cell lines and animal xenografts. In a pilot study with human tissue (n = 19), we were able to accurately categorize HER2-negative and HER2-positve tumors from FNA specimens. Taken together, the EpiView-D4 offers a promising alternative to invasive—and often unavailable—pathology services and may enable the democratization of effective breast cancer management in limited-resource settings.more » « less
-
Abstract Paper-based electrochemical sensors provide the opportunity for low-cost, portable and environmentally friendly single-use chemical analysis and there are various reports of surface-functionalized paper electrodes. Here we report a composite paper electrode that is fabricated through designed papermaking using cellulose, carbon fibers (CF), and graphene oxide (GO). The composite paper has well-controlled structure, stable, and repeatable properties, and offers the electrocatalytic activities for sensitive and selective chemical detection. We demonstrate that this CF/GO/cellulose composite paper can be reduced electrochemically using relatively mild conditions and this GO reduction confers electrocatalytic properties to the composite paper. Finally, we demonstrate that this composite paper offers sensing performance (sensitivity and selectivity) comparable to, or better than, paper-based sensors prepared by small-batch surface-modification (e.g., printing) methods. We envision this coupling of industrialized papermaking technologies with interfacial engineering and electrochemical reduction can provide a platform for single-use and portable chemical detection for a wide range of applications.more » « less