skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Universal Predictor‐Corrector Approach for Minimizing Artifacts Due To Mesh Refinement
Abstract With nested grids or related approaches, it is known that numerical artifacts can be generated at the interface of mesh refinement. Most of the existing methods of minimizing these artifacts are either problem‐dependent or numerical methods‐dependent. In this paper, we propose a universal predictor‐corrector approach to minimize these artifacts. By its construction, the approach can be applied to a wide class of models and numerical methods without modifying the existing methods but instead incorporating an additional step. The idea is to use an additional grid setup with a refinement interface at a different location, and then to correct the predicted state near the refinement interface by using information from the other grid setup. We give some analysis for our method in the setting of a one‐dimensional advection equation, showing that the key to the success of the method depends on an optimized way of choosing the weight functions, which determine the strength of the corrector at a certain location. Furthermore, the method is also tested in more general settings by numerical experiments, including shallow water equations, multi‐dimensional problems, and a variety of underlying numerical methods including finite difference/finite volume and spectral element. Numerical tests suggest the effectiveness of the method on reducing numerical artifacts due to mesh refinement.  more » « less
Award ID(s):
2326631
PAR ID:
10537321
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley Periodicals LLC on behalf of American Geophysical Union
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
15
Issue:
11
ISSN:
1942-2466
Page Range / eLocation ID:
e2023MS003688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods. 
    more » « less
  2. In this paper, we develop an efficient numerical scheme for solving one-dimensional hyperbolic interface problems. The immersed finite element (IFE) method is used for spatial discretization, which allows the solution mesh to be independent of the interface. Consequently, a fixed uniform mesh can be used throughout the entire simulation. The method of lines is used for temporal discretization. Numerical experiments are provided to show the features of these new methods. 
    more » « less
  3. Summary Methods to compute the stress intensity factors along a three‐dimensional (3D) crack front often display a tenuous rate of convergence under mesh refinement or, worse, do not converge, particularly when applied on unstructured meshes. In this work, we propose an alternative formulation of the interaction integral functional and a method to compute stress intensity factors along the crack front which can be shown to converge. The novelty of our method is the decoupling of the two discretizations: the bulk mesh for the finite element solution and the mesh along the crack front for the numerical stress intensity factors, and hence we term it the multiple mesh interaction integral (MMII) method. Through analysis of the convergence of the functional and method, we find scalings of these two mesh sizes to guarantee convergence of the computed stress intensity factors in a variety of norms, including maximum pointwise error and total variation. We demonstrate the MMII on four examples: a semiinfinite straight crack with the asymptotic displacement fields, the same geometry with a nonuniform stress intensity factor along the crack front, a spherical cap crack in a cylinder under tension, and the elliptical crack under far‐field tension and shear. 
    more » « less
  4. Abstract Substantial numerical difficulties associated with the computational modeling of multiscale global atmospheric chemical transport impose severe limitations on the spatial resolution of nonadaptive fixed grids. The crude spatial discretization introduces a large amount of numerical diffusion into the system, which, in combination with strong flow stretching, causes large numerical errors. To resolve this issue, we have developed an optimized wavelet‐based adaptive mesh refinement (OWAMR) method. The OWAMR is a three‐dimensional adaptive method that introduces a fine grid dynamically only in the regions where small spatial structures occur. The algorithm uses a new two‐parameter adaptation criterion that significantly (by factors between 1.5 and 2.7) reduces the number of grid points compared with the more conventional one‐parameter grid adaptation used by wavelet‐based adaptive techniques and high‐order upwind schemes, which enable one to increase the accuracy of approximation of the advection operator substantially. It has been shown that the method simulates the dynamics of a pollution plume that travels on a global scale, producing less than 3% error. To achieve such accuracy, conventional three‐dimensional nonadaptive techniques would require five orders of magnitude more computational resources. Therefore, the method provides a realistic opportunity to model accurately a variety of the most demanding multiscale problems in the area of atmospheric chemical transport, which are difficult or impossible to simulate on existing computational facilities with conventional fixed‐grid techniques. 
    more » « less
  5. We present a high order immersed finite element (IFE) method for solving 1D parabolic interface problems. These methods allow the solution mesh to be independent of the interface. Time marching schemes including Backward-Eulerand Crank-Nicolson methods are implemented to fully discretize the system. Numerical examples are provided to test the performance of our numerical schemes. 
    more » « less