skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Introducing the Extinction Gambling Task
Decisions about extinction risks are ubiquitous in everyday life and for our continued existence as a species. We introduce a new risky-choice task that can be used to study this topic: The Extinction Gambling Task. Here, we investigate two versions of this task: a Keep variant, where participants cannot accumulate any more earnings after the extinction event, and a Lose variant, where extinction also wipes out all previous earnings. We derive optimal solutions for both variants and compare them to behavioural data. Our findings suggest that people understand the difference between the two variants and their behaviour is qualitatively in line with the optimal solution. Further, we find evidence for risk-aversion in the Keep condition but not in the Lose condition. We hope that this task can facilitate further research on this vital topic.  more » « less
Award ID(s):
2145308
PAR ID:
10537384
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
eScholarship University of California
Date Published:
ISSN:
1069-7977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Adaptive tools that can change their shape to support users with motor tasks have been used in a variety of applications, such as to improve ergonomics and support muscle memory. In this paper, we investigate whether shape-adapting tools can also help in motor skill training. In contrast to static training tools that maintain task difficulty at a fixed level during training, shape-adapting tools can vary task difficulty and thus keep learners’ training at the optimal challenge point, where the task is neither too easy, nor too difficult. To investigate whether shape adaptation helps in motor skill training, we built a study prototype in the form of an adaptive basketball stand that works in three conditions: (1) static, (2) manually adaptive, and (3) auto-adaptive. For the auto-adaptive condition, the tool adapts to train learners at the optimal challenge point where the task is neither too easy nor too difficult. Results from our two user studies show that training in the auto-adaptive condition leads to statistically significant learning gains when compared to the static (F1, 11 = 1.856, p < 0.05) and manually adaptive conditions (F1, 11 = 2.386, p < 0.05). 
    more » « less
  2. Elkins, Christopher A. (Ed.)
    ABSTRACT Monitoring the prevalence of SARS-CoV-2 variants is necessary to make informed public health decisions during the COVID-19 pandemic. PCR assays have received global attention, facilitating a rapid understanding of variant dynamics because they are more accessible and scalable than genome sequencing. However, as PCR assays target only a few mutations, their accuracy could be reduced when these mutations are not exclusive to the target variants. Here we introduce PRIMES, an algorithm that evaluates the sensitivity and specificity of SARS-CoV-2 variant-specific PCR assays across different geographical regions by incorporating sequences deposited in the GISAID database. Using PRIMES, we determined that the accuracy of several PCR assays decreased when applied beyond the geographic scope of the study in which the assays were developed. Subsequently, we used this tool to design Alpha and Delta variant-specific PCR assays for samples from Illinois, USA. In silico analysis using PRIMES determined the sensitivity/specificity to be 0.99/0.99 for the Alpha variant-specific PCR assay and 0.98/1.00 for the Delta variant-specific PCR assay in Illinois, respectively. We applied these two variant-specific PCR assays to six local sewage samples and determined the dominant SARS-CoV-2 variant of either the wild type, the Alpha variant, or the Delta variant. Using next-generation sequencing (NGS) of the spike (S) gene amplicons of the Delta variant-dominant samples, we found six mutations exclusive to the Delta variant (S:T19R, S:Δ156/157, S:L452R, S:T478K, S:P681R, and S:D950N). The consistency between the variant-specific PCR assays and the NGS results supports the applicability of PRIMES. IMPORTANCE Monitoring the introduction and prevalence of variants of concern (VOCs) and variants of interest (VOIs) in a community can help the local authorities make informed public health decisions. PCR assays can be designed to keep track of SARS-CoV-2 variants by measuring unique mutation markers that are exclusive to the target variants. However, the mutation markers may not be exclusive to the target variants because of regional and temporal differences in variant dynamics. We introduce PRIMES, an algorithm that enables the design of reliable PCR assays for variant detection. Because PCR is more accessible, scalable, and robust for sewage samples than sequencing technology, our findings will contribute to improving global SARS-CoV-2 variant surveillance. 
    more » « less
  3. In everyday life, people routinely make decisions that involve irredeemable risks such as death (e.g., while driving). Even though these decisions under extinction risk are common, practically important, and have different properties compared to the types of decisions typically studied by decision scientists, they have received little research attention. The present work advances the formal understanding of decision making under extinction risk by introducing a novel experimental paradigm, the Extinction Gambling Task (EGT). We derive optimal strategies for three different types of extinction and near-extinction events, and compare them to participants’ choices in three experiments. Leveraging computational modelling to describe strategies at the individual level, we document strengths and shortcomings in participants’ decisions under extinction risk. Specifically, we find that, while participants are relatively good in terms of the qualitative strategies they employ, their decisions are nevertheless affected by loss chasing, scope insensitivity, and opportunity cost neglect. We hope that by formalising decisions under extinction risk and providing a task to study them, this work will facilitate future research on an important topic that has been largely ignored. 
    more » « less
  4. Spectre and Meltdown attacks and their variants exploit hardware performance optimization features to cause security breaches. Secret information is accessed and leaked through covert or side channels. New attack variants keep appearing and we do not have a systematic way to capture the critical characteristics of these attacks and evaluate why they succeed or fail.In this paper, we provide a new attack-graph model for reasoning about speculative execution attacks. We model attacks as ordered dependency graphs, and prove that a race condition between two nodes can occur if there is a missing dependency edge between them. We define a new concept, “security dependency”, between a resource access and its prior authorization operation. We show that a missing security dependency is equivalent to a race condition between authorization and access, which is a root cause of speculative execution attacks. We show detailed examples of how our attack graph models the Spectre and Meltdown attacks, and is generalizable to all the attack variants published so far. This attack model is also very useful for identifying new attacks and for generalizing defense strategies. We identify several defense strategies with different performance-security tradeoffs. We show that the defenses proposed so far all fit under one of our defense strategies. We also explain how attack graphs can be constructed and point to this as promising future work for tool designers 
    more » « less
  5. null (Ed.)
    Applications in cloud platforms motivate the study of efficient load balancing under job-server constraints and server heterogeneity. In this paper, we study load balancing on a bipartite graph where left nodes correspond to job types and right nodes correspond to servers, with each edge indicating that a job type can be served by a server. Thus edges represent locality constraints, i.e., an arbitrary job can only be served at servers which contain certain data and/or machine learning (ML) models. Servers in this system can have heterogeneous service rates. In this setting, we investigate the performance of two policies named Join-the-Fastest-of-the-Shortest-Queue (JFSQ) and Join-the-Fastest-of-the-Idle-Queue (JFIQ), which are simple variants of Join-the-Shortest-Queue and Join-the-Idle-Queue, where ties are broken in favor of the fastest servers. Under a "well-connected'' graph condition, we show that JFSQ and JFIQ are asymptotically optimal in the mean response time when the number of servers goes to infinity. In addition to asymptotic optimality, we also obtain upper bounds on the mean response time for finite-size systems. We further show that the well-connectedness condition can be satisfied by a random bipartite graph construction with relatively sparse connectivity. 
    more » « less