skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Epineuston vortex recapture enhances thrust in tiny water skaters
Vortex recapture underpins the exceptional mobility of nature’s finest fliers and swimmers. Utilized by agile fruit flies and efficient jellyfish, this phenomenon is well-documented in bulk fluids. Despite extensive studies on the neuston—a vital fluidic interface where diverse life forms interact between air and water—neuston vortical hydrodynamics remain unexplored. We investigate epineuston (on water) vortical hydrodynamics inMicrovelia americana, one of the smallest and fastest water striders, skating at 50 BL/s (15 cm/s). Their middle legs shed counter-rotating vortices, re-energized by hind legs, demonstrating epineuston vortex recapture. High-speed imaging, particle imaging velocimetry, physical models, and CFD simulations show re-energization increases thrust by creating positive pressure at the hind tarsi, acting as a virtual wall. This vortex capture is facilitated by the tripod gait, leg morphology, and precise spatio-temporal placement of the hind tarsi during the power stroke. Our study extends vortex recapture principles from bulk fluids to the neuston, offering insights into efficient epineuston locomotion, where surface tension and capillary waves challenge movement. Understanding epineuston vortex hydrodynamics can guide the development of energy-efficient microrobots to explore the planet’s neuston niches, critical frontlines of climate change and pollution.  more » « less
Award ID(s):
2310741 1806833
PAR ID:
10537386
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis The air–water interface of the planet’s water bodies, such as ponds, lakes, and streams, presents an uncertain ecological niche with predatory threats from above and below. As Microvelia americana move across the water surface in small ponds, they face potential injury from attacks by birds, fish, and underwater invertebrates. Thus, our study investigates the effects of losing individual or pairs of tarsi on M. americana’s ability to walk on water. Removal of both hind tarsi causes M. americana to rock their bodies (yaw) while running across the water surface at $$\pm 19^{\circ }$$, compared to $$\pm 7^{\circ }$$ in nonablated specimens. This increase in yaw, resulting from the removal of hind tarsi, indicates that M. americana use their hind legs as “rudders” to regulate yaw, originating from the contralateral middle legs’ strokes on the water’s surface through an alternating tripod gait. Ablation of the ipsilateral middle and hind tarsi disrupts directionality, making M. americana turn in the direction of their intact limbs. This loss of directionality does not occur with the removal of contralateral middle and hind tarsi. However, M. americana lose their ability to use the alternating tripod gait to walk on water on the day of contralateral ablation. Remarkably, by the next day, M. americana adapt and regain the ability to walk on water using the alternating tripod gait. Our findings elucidate the specialized leg dynamics within the alternating tripod gait of M. americana, and their adaptability to tarsal loss. This research could guide the development and design strategies of small, adaptive, and resilient micro-robots that can adapt to controller malfunction or actuator damage for walking on water and terrestrial surfaces. 
    more » « less
  2. Mate choice and male–male combat over successful mating often cause disproportionate exaggeration of male trait relative to body size. However, the exaggeration is often not the only trait involved with male–male combat and mate choice: suites of co-expressed traits may function together as a coordinated unit. When this occurs, dimorphism may be expected for these additional, non-exaggerated, structures. S. femorata males have disproportionately large hind-legs used in male–male combat over females. During the fights, fore- and mid-legs are used to keep males in positions where advantageous for leverage. Because use of the exaggerated hind-legs is coordinated with the other legs, they will coevolve as a functional unit. Here, we show that 1) S. femorata has sexual size differences in all three legs; 2) males show positive allometry in the relative sizes of all three legs; and 3) microstructures of tarsi on the fore- and mid-legs are also sexually dimorphic. Despite these differences in the tarsal microstructure, 4) adhesion forces of the tarsi had no sexual difference in flat surface. The microstructure would be specialized on attaching elytra surface. These results suggest that the three pairs of legs function together during fighting behavior, with hind-legs employed primarily for fighting, and the fore- and mid-legs functioning to grip females, keeping males positioned on the back of the female during combat. 
    more » « less
  3. We present an Eulerian vortex method based on the theory of flow maps to simulate the complex vortical motions of incompressible fluids. Central to our method is the novel incorporation of the flow-map transport equations forline elements, which, in combination with a bi-directional marching scheme for flow maps, enables the high-fidelity Eulerian advection of vorticity variables. The fundamental motivation is that, compared to impulsem, which has been recently bridged with flow maps to encouraging results, vorticityωpromises to be preferable for its numerical stability and physical interpretability. To realize the full potential of this novel formulation, we develop a new Poisson solving scheme for vorticity-to-velocity reconstruction that is both efficient and able to accurately handle the coupling near solid boundaries. We demonstrate the efficacy of our approach with a range of vortex simulation examples, including leapfrog vortices, vortex collisions, cavity flow, and the formation of complex vortical structures due to solid-fluid interactions. 
    more » « less
  4. Synopsis Insects exhibit remarkable adaptability in their locomotive strategies in diverse environments, a crucial trait for foraging, survival, and predator avoidance. Microvelia americana, tiny 2–3 mm insects that adeptly walk on water surfaces, exemplify this adaptability by using the alternating tripod gait in both aquatic and terrestrial terrains. These insects commonly inhabit low-flow ponds and streams cluttered with natural debris like leaves, twigs, and duckweed. Using high-speed imaging and pose-estimation software, we analyze M. americana movement on water, sandpaper (simulating land), and varying duckweed densities (10%, 25%, and 50% coverage). Our results reveal M. americana maintain consistent joint angles and strides of their upper and hind legs across all duckweed coverages, mirroring those seen on sandpaper. Microvelia americana adjust the stride length of their middle legs based on the amount of duckweed present, decreasing with increased duckweed coverage and at 50% duckweed coverage, their middle legs’ strides closely mimic their strides on sandpaper. Notably, M. americana achieve speeds up to 56 body lengths per second on the deformable surface of water, nearly double those observed on sandpaper and duckweed, which are rough, heterogeneous surfaces. This study highlights M. americana’s ecological adaptability, setting the stage for advancements in amphibious robotics that emulate their unique tripod gait for navigating complex terrains. 
    more » « less
  5. Campaniform sensilla (CS) are mechanosensors embedded in the cuticle of insects. They are often found at locations near the joints of leg segments. On legs, CS are generally considered to respond directionally to cuticle bending during legged locomotion. It is currently unclear how CS locations affect strain levels at the CS, but this information is crucial for understanding how CS respond to stimuli. Here we present a parametric finite element model of the femoral CS field forDrosophilahind legs with 12 general and seven CS-specific parameters each. This model allows testing how changes in CS location, orientation and material property affect strain levels at each CS. We used experimentally acquired kinematic data and computed ground reaction forces to simulatein vivo-like forward stepping. The displacements found in this study at the physiological CS field location near the trochanter–femur joint are smaller than those necessary for conformation changes of ion channels involved in signal elicitation. Also, variation of material properties of the CS had little influence on displacement magnitudes at the CS cap where the sensory neuron attaches. Thus, our results indicate that ground reaction forces alone are unlikely to serve CS field activation during forward walking. 
    more » « less