skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reason for Future, Act for Now: A Principled Architecture for Autonomous LLM Agents
Large language models (LLMs) demonstrate impressive reasoning abilities, but translating reasoning into actions in the real world remains challenging. In particular, it is unclear how to complete a given task provably within a minimum number of interactions with the external environment, e.g., through an internal mechanism of reasoning. To this end, we propose the first framework with provable regret guarantees to orchestrate reasoning and acting, which we call “reason for future, act for now” (RAFA). Specifically, we design a prompt template for reasoning that learns from the memory buffer and plans a future trajectory over a long horizon (“reason for future”). At each step, the LLM agent takes the initial action of the planned trajectory (“act for now”), stores the collected feedback in the memory buffer, and reinvokes the reasoning routine to replan the future trajectory from the new state. The key idea is to cast reasoning in LLMs as learning and planning in Bayesian adaptive Markov decision processes (MDPs). Correspondingly, we prompt LLMs with the memory buffer to estimate the unknown environment (learning) and generate an optimal trajectory for multiple future steps that maximize a value function (planning). The learning and planning subroutines are performed in an “incontext” manner to emulate the actor-critic update for MDPs. Our theoretical analysis establishes a √T regret, while our experimental validation demonstrates superior empirical performance. Here, T denotes the number of online interactions.  more » « less
Award ID(s):
2225087
PAR ID:
10537437
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ICML
Date Published:
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Model-free reinforcement learning is known to be memory and computation efficient and more amendable to large scale problems. In this paper, two model-free algorithms are introduced for learning infinite-horizon average-reward Markov Decision Processes (MDPs). The first algorithm reduces the problem to the discounted-reward version and achieves O(𝑇^2/3) regret after 𝑇 steps, under the minimal assumption of weakly communicating MDPs. To our knowledge, this is the first model-free algorithm for general MDPs in this setting. The second algorithm makes use of recent advances in adaptive algorithms for adversarial multi-armed bandits and improves the regret to O(T^{1/2}), albeit with a stronger ergodic assumption. This result significantly improves over the O(T^{3/4}) regret achieved by the only existing model-free algorithm by Abbasi-Yadkori et al. (2019) for ergodic MDPs in the infinite-horizon average-reward setting. 
    more » « less
  2. We study model-free reinforcement learning (RL) algorithms for infinite-horizon average-reward Markov decision process (MDP), which is more appropriate for applications that involve continuing operations not divided into episodes. In contrast to episodic/discounted MDPs, theoretical understanding of model-free RL algorithms is relatively inadequate for the average-reward setting. In this paper, we consider both the online setting and the setting with access to a simulator. We develop computationally efficient model-free algorithms that achieve sharper guarantees on regret/sample complexity compared with existing results. In the online setting, we design an algorithm, UCB-AVG, based on an optimistic variant of variance-reduced Q-learning. We show that UCB-AVG achieves a regret bound $$\widetilde{O}(S^5A^2sp(h^*)\sqrt{T})$$ after $$T$$ steps, where $$S\times A$$ is the size of state-action space, and $sp(h^*)$ the span of the optimal bias function. Our result provides the first computationally efficient model-free algorithm that achieves the optimal dependence in $$T$$ (up to log factors) for weakly communicating MDPs, which is necessary for low regret. In contrast, prior results either are suboptimal in $$T$$ or require strong assumptions of ergodicity or uniformly mixing of MDPs. In the simulator setting, we adapt the idea of UCB-AVG to develop a model-free algorithm that finds an $$\epsilon$$-optimal policy with sample complexity $$\widetilde{O}(SAsp^2(h^*)\epsilon^{-2} + S^2Asp(h^*)\epsilon^{-1}).$$ This sample complexity is near-optimal for weakly communicating MDPs, in view of the minimax lower bound $$\Omega(SAsp(^*)\epsilon^{-2})$$. Existing work mainly focuses on ergodic MDPs and the results typically depend on $$t_{mix},$$ the worst-case mixing time induced by a policy. We remark that the diameter $$D$$ and mixing time $$t_{mix}$$ are both lower bounded by $sp(h^*)$, and $$t_{mix}$$ can be arbitrarily large for certain MDPs. On the technical side, our approach integrates two key ideas: learning an $$\gamma$$-discounted MDP as an approximation, and leveraging reference-advantage decomposition for variance in optimistic Q-learning. As recognized in prior work, a naive approximation by discounted MDPs results in suboptimal guarantees. A distinguishing feature of our method is maintaining estimates of value-difference between state pairs to provide a sharper bound on the variance of reference advantage. We also crucially use a careful choice of the discounted factor $$\gamma$$ to balance approximation error due to discounting and the statistical learning error, and we are able to maintain a good-quality reference value function with $O(SA)$ space complexity. 
    more » « less
  3. This paper presents LEVIOSA, a novel framework for text- and speech-based uncrewed aerial vehicle (UAV) trajectory generation. By leveraging multimodal large language models (LLMs) to interpret natural language commands, the system converts text and audio inputs into executable flight paths for UAV swarms. The approach aims to simplify the complex task of multi-UAV trajectory generation, which has significant applications in fields such as search and rescue, agriculture, infrastructure inspection, and entertainment. The framework involves two key innovations: a multi-critic consensus mechanism to evaluate trajectory quality and a hierarchical prompt structuring for improved task execution. The innovations ensure fidelity to user goals. The framework integrates several multimodal LLMs for high-level planning, converting natural language inputs into 3D waypoints that guide UAV movements and per-UAV low-level controllers to control each UAV in executing its assigned 3D waypoint path based on the high-level plan. The methodology was tested on various trajectory types with promising accuracy, synchronization, and collision avoidance results. The findings pave the way for more intuitive human–robot interactions and advanced multi-UAV coordination. 
    more » « less
  4. Ruiz, Francisco and (Ed.)
    Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an $$\epsilon$$-JDP algorithm with a regret of $$\widetilde{O}(\sqrt{SAH^2T}+S^2AH^3/\epsilon)$$ which matches the information-theoretic lower bound of non-private learning for all choices of $$\epsilon> S^{1.5}A^{0.5} H^2/\sqrt{T}$$. In the above, $$S$$, $$A$$ denote the number of states and actions, $$H$$ denotes the planning horizon, and $$T$$ is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves privacy for free asymptotically as $$T\rightarrow \infty$$. Our techniques — which could be of independent interest — include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case. 
    more » « less
  5. Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an ϵ-JDP algorithm with a regret of O˜(sqrt(SAH^2T) +S^2AH^3/ϵ) which matches the information-theoretic lower bound of non-private learning for all choices of ϵ>S^1.5A^0.5H^2/sqrt(T). In the above, S, A denote the number of states and actions, H denotes the planning horizon, and T is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves \emph{privacy for free} asymptotically as T→∞. Our techniques -- which could be of independent interest -- include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case. 
    more » « less