Abstract The adoption of Single-phase Liquid Immersion Cooling (Sp-LIC) for Information Technology equipment provides an excellent cooling platform coupled with significant energy savings. There are, however, very limited studies related to the reliability of such cooling technology. The Accelerated Thermal Cycling (ATC) test given ATC JEDEC is relevant just for air cooling but there is no such standard for immersion cooling. The ASTM benchmark D3455 with some appropriate adjustments was adopted to test the material compatibility because of the air and dielectric fluid differences in the heat capacitance property and corresponding ramp rate during thermal cycling. For this study, accelerated thermal degradation of the printed circuit board (PCB), passive components, and fiber optic cables submerged in air, white mineral oil, and synthetic fluid at a hoisted temperature of 45C and 35% humidity is undertaken. This paper serves multiple purposes including designing experiments, testing and evaluating material compatibility of PCB, passive components, and optical fibers in different hydrocarbon oils for single-phase immersion cooling. Samples of different materials were immersed in different hydrocarbon oils and air and kept in an environmental chamber at 45C for a total of 288 hours. Samples were then evaluated for their mechanical and electrical properties using Dynamic Mechanical Analyzer (DMA) and a multimeter, respectively. The cross-sections of some samples were also investigated for their structural integrity using SEM. The literature gathered on the subject and quantifiable data gathered by the authors provide the primary basis for this research document.
more »
« less
Impact of Immersion Cooling on Thermomechanical Properties of Halogen-Free Substrate Core
Abstract The data center’s server power density and heat generation have increased exponentially because of the recent, unparalleled rise in the processing and storing of massive amounts of data on a regular basis. One-third of the overall energy used in conventional air-cooled data centers is directed toward cooling information technology equipment (ITE). The traditional air-cooled data centers must have low air supply temperatures and high air flow rates to support high-performance servers, rendering air cooling inefficient and compelling data center operators to use alternative cooling technology. Due to the direct interaction of dielectric fluids with all the components in the server, single-phase liquid immersion cooling (Sp-LIC) addresses mentioned problems by offering a significantly greater thermal mass and a high percentage of heat dissipation. Sp-LIC is a viable option for hyper-scale, edge, and modular data center applications because, unlike direct-to-chip liquid cooling, it does not call for a complex liquid distribution system configuration and the dielectric liquid can make direct contact with all server components. Immersion cooling is superior to conventional air-cooling technology in terms of thermal energy management however, there have been very few studies on the reliability of such cooling technology. A detailed assessment of the material compatibility of different electronic packaging materials for immersion cooling was required to comprehend their failure modes and reliability. For the mechanical design of electronics, the modulus, and thermal expansion are essential material characteristics. The substrate is a crucial element of an electronic package that has a significant impact on the reliability and failure mechanisms of electronics at both the package and the board level. As per Open Compute Project (OCP) design guidelines for immersion-cooled IT equipment, the traditional material compatibility tests from standards like ASTM 3455 can be used with certain appropriate adjustments. The primary focus of this research is to address two challenges: The first part is to understand the impact of thermal aging on the thermo-mechanical properties of the halogen-free substrate core in the single-phase immersion cooling. Another goal of the study is to comprehend how thermal aging affects the thermo-mechanical characteristics of the substrate core in the air. In this research the substrate core is aged in synthetic hydrocarbon fluid (EC100), Polyalphaolefin 6 (PAO 6), and ambient air for 720 hours each at two different temperatures: 85°C and 125°C and the complex modulus before and after aging are calculated and compared.
more »
« less
- Award ID(s):
- 2209751
- PAR ID:
- 10537454
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8751-6
- Format(s):
- Medium: X
- Location:
- San Diego, California, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Data centers are witnessing an unprecedented increase in processing and data storage, resulting in an exponential increase in the servers’ power density and heat generation. Data center operators are looking for green energy efficient cooling technologies with low power consumption and high thermal performance. Typical air-cooled data centers must maintain safe operating temperatures to accommodate cooling for high power consuming server components such as CPUs and GPUs. Thus, making air-cooling inefficient with regards to heat transfer and energy consumption for applications such as high-performance computing, AI, cryptocurrency, and cloud computing, thereby forcing the data centers to switch to liquid cooling. Additionally, air-cooling has a higher OPEX to account for higher server fan power. Liquid Immersion Cooling (LIC) is an affordable and sustainable cooling technology that addresses many of the challenges that come with air cooling technology. LIC is becoming a viable and reliable cooling technology for many high-power demanding applications, leading to reduced maintenance costs, lower water utilization, and lower power consumption. In terms of environmental effect, single-phase immersion cooling outperforms two-phase immersion cooling. There are two types of single-phase immersion cooling methods namely, forced and natural convection. Here, forced convection has a higher overall heat transfer coefficient which makes it advantageous for cooling high-powered electronic devices. Obviously, with natural convection, it is possible to simplify cooling components including elimination of pump. There is, however, some advantages to forced convection and especially low velocity flow where the pumping power is relatively negligible. This study provides a comparison between a baseline forced convection single phase immersion cooled server run for three different inlet temperatures and four different natural convection configurations that utilize different server powers and cold plates. Since the buoyancy effect of the hot fluid is leveraged to generate a natural flow in natural convection, cold plates are designed to remove heat from the server. For performance comparison, a natural convection model with cold plates is designed where water is the flowing fluid in the cold plate. A high-density server is modeled on the Ansys Icepak, with a total server heat load of 3.76 kW. The server is made up of two CPUs and eight GPUs with each chip having its own thermal design power (TDPs). For both heat transfer conditions, the fluid used in the investigation is EC-110, and it is operated at input temperatures of 30°C, 40°C, and 50°C. The coolant flow rate in forced convection is 5 GPM, whereas the flow rate in natural convection cold plates is varied. CFD simulations are used to reduce chip case temperatures through the utilization of both forced and natural convection. Pressure drop and pumping power of operation are also evaluated on the server for the given intake temperature range, and the best-operating parameters are established. The numerical study shows that forced convection systems can maintain much lower component temperatures in comparison to natural convection systems even when the natural convection systems are modeled with enhanced cooling characteristics.more » « less
-
Abstract Data centers are critical to the functioning of modern society as they host digital infrastructure. However, data centers can consume significant amounts of energy, and a substantial amount of this energy goes to cooling systems. Efficient thermal management of information technology equipment is therefore essential and allows the user to obtain peak performance from a system and enables higher equipment reliability. Thermal management of data center electronics is becoming more challenging due to rising power densities at the chip level. Cooling technologies like single-phase immersion cooling allow overcoming many such challenges owing to their higher thermal mass, lower fluid pumping powers, and potential component reliability enhancements. It is known that immersion cooling deployments require extremely low coolant flow rates, and, in many cases, natural convection can also be used to sufficiently dissipate the heat from the hot server components. It, therefore, becomes difficult to ascertain whether the rate of heat transfer is being dominated by forced or natural convection. This may lead to ambiguity in choosing an optimal heat sink solution and a suitable system mechanical design due to unknown flow regimes, further leading to sub-optimal system performance. Mixed convection can be used to enhance heat transfer in immersion cooling systems. The present investigation quantifies the contribution of mixed convection using numerical methods in an immersion-cooled server. An open compute server with dual CPU sockets is modeled on Ansys Icepak with varying power loads of 115W, 160W and 200W. The chosen dielectric fluid for this single-phase immersion-cooled setup is EC-100. Steady-state Computational Fluid Dynamics (CFD) simulations are conducted for forced, natural, and mixed convection heat transfer in a thermally shadowed server configuration at varying inlet flow rates. A baseline heat sink and an optimized heat sink with an increased fin thickness and reduced fin count are utilized for performance comparison. The effect of varying Reynolds number and Richardson number on the heat transfer rate from the heat sink is discussed to assess the flow regime, stability of the flow around the submerged components which depends on the geometry, orientation, fluid properties, flow rate and direction of the flow. The dimensionless numbers’ influence on heat transfer rate from a conventional air-cooled heat sink in immersion versus an immersion-optimized heat sink is also compared. The impact of server orientation on heat transfer behavior for the immersion optimized heat sink is also studied on heat transfer behavior for the immersion optimized heat sink.more » « less
-
Abstract In recent years there has been a phenomenal development in cloud computing, networking, virtualization, and storage, which has increased the demand for high performance data centers. The demand for higher CPU (Central Processing Unit) performance and increasing Thermal Design Power (TDP) trends in the industry needs advanced methods of cooling systems that offer high heat transfer capabilities. Maintaining the CPU temperature within the specified limitation with air-cooled servers becomes a challenge after a certain TDP threshold. Among the equipments used in data centers, energy consumption of a cooling system is significantly large and is typically estimated to be over 40% of the total energy consumed. Advancements in Dual In-line Memory Modules (DIMMs) and the CPU compatibility led to overall higher server power consumption. Recent trends show DIMMs consume up to or above 20W each and each CPU can support up to 12 DIMM channels. Therefore, in a data center where high-power dense compute systems are packed together, it demands efficient cooling for the overall server components. In single-phase immersion cooling technology, electronic components or servers are typically submerged in a thermally conductive dielectric fluid allowing it to dissipate heat from all the electronics. The broader focus of this research is to investigate the heat transfer and flow behavior in a 1U air cooled spread core configuration server with heat sinks compared to cold plates attached in series in an immersion environment. Cold plates have extremely low thermal resistance compared to standard air cooled heatsinks. Generally, immersion fluids are dielectric, and fluids used in cold plates are electrically conductive which exposes several problems. In this study, we focus only on understanding the thermal and flow behavior, but it is important to address the challenges associated with it. The coolant used for cold plate is 25% Propylene Glycol water mixture and the fluid used in the tank is a commercially available synthetic dielectric fluid EC-100. A Computational Fluid Dynamics (CFD) model is built in such a way that only the CPUs are cooled using cold plates and the auxiliary electronic components are cooled by the immersion fluid. A baseline CFD model using an air-cooled server with heat sinks is compared to the immersion cold server with cold plates attached to the CPU. The server model has a compact model for cold plate representing thermal resistance and pressure drop. Results of the study discuss the impact on CPU temperatures for various fluid inlet conditions and predict the cooling capability of the integrated cold plate in immersion environment.more » « less
-
Abstract The next radical change in the thermal management of data centers is to shift from conventional cooling methods like air-cooling to direct liquid cooling to enable high thermal mass and corresponding superior cooling. There has been in the past few years a limited adoption of direct liquid cooling in data centers because of its simplicity and high heat dissipation capacity. Single-phase engineered fluid immersion cooling has several other benefits like better server performance, even temperature profile, and higher rack densities and the ability to cool all components in a server without the need for electrical isolation. The reliability aspect of such cooling technology has not been well addressed in the open literature. This paper presents the performance of a fully single-phase dielectric fluid immersed server over wide temperature ranges in an environmental chamber. The server was placed in an environmental chamber and applied extreme temperatures ranging from −20 °C to 10 °C at 100% relative humidity and from 20 to 55 °C at constant 50% relative humidity for extended durations. This work is a first attempt of measuring the performance of a server and other components like pump including flow rate drop, starting trouble, and other potential issues under extreme climatic conditions for a completely liquid-submerged system. Pumping power consumption is directly proportional to the operating cost of a data center. The experiment was carried out until the core temperature reached the maximum junction temperature. This experiment helps to determine the threshold capacity and the robustness of the server for its applications in extreme climatic conditions.more » « less
An official website of the United States government

