Abstract Control over the copy number and nanoscale positioning of quantum dots (QDs) is critical to their application to functional nanomaterials design. However, the multiple non-specific binding sites intrinsic to the surface of QDs have prevented their fabrication into multi-QD assemblies with programmed spatial positions. To overcome this challenge, we developed a general synthetic framework to selectively attach spatially addressable QDs on 3D wireframe DNA origami scaffolds using interfacial control of the QD surface. Using optical spectroscopy and molecular dynamics simulation, we investigated the fabrication of monovalent QDs of different sizes using chimeric single-stranded DNA to control QD surface chemistry. By understanding the relationship between chimeric single-stranded DNA length and QD size, we integrated single QDs into wireframe DNA origami objects and visualized the resulting QD-DNA assemblies using electron microscopy. Using these advances, we demonstrated the ability to program arbitrary 3D spatial relationships between QDs and dyes on DNA origami objects by fabricating energy-transfer circuits and colloidal molecules. Our design and fabrication approach enables the geometric control and spatial addressing of QDs together with the integration of other materials including dyes to fabricate hybrid materials for functional nanoscale photonic devices.
more »
« less
Ultrafast dense DNA functionalization of quantum dots and rods for scalable 2D array fabrication with nanoscale precision
Scalable fabrication of two-dimensional (2D) arrays of quantum dots (QDs) and quantum rods (QRs) with nanoscale precision is required for numerous device applications. However, self-assembly–based fabrication of such arrays using DNA origami typically suffers from low yield due to inefficient QD and QR DNA functionalization. In addition, it is challenging to organize solution-assembled DNA origami arrays on 2D device substrates while maintaining their structural fidelity. Here, we reduced manufacturing time from a few days to a few minutes by preparing high-density DNA-conjugated QDs/QRs from organic solution using a dehydration and rehydration process. We used a surface-assisted large-scale assembly (SALSA) method to construct 2D origami lattices directly on solid substrates to template QD and QR 2D arrays with orientational control, with overall loading yields exceeding 90%. Our fabrication approach enables the scalable, high fidelity manufacturing of 2D addressable QDs and QRs with nanoscale orientational and spacing control for functional 2D photonic devices.
more »
« less
- Award ID(s):
- 1956054
- PAR ID:
- 10508901
- Publisher / Repository:
- Sciemces Advances
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 32
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Functionalization of quantum dots (QDs) and quantum rods (QRs) with ligands is essential for their further practical application across various domains. Dehydration‐assisted functionalization (DAF) is a versatile method applicable to a wide range of hydrophilic ligands with an affinity to the surface of QDs and QRs. This approach facilitates rapid one‐pot ligand exchange and dense modification by efficiently transferring these ligands onto the surface of QDs and QRs. This study demonstrates the efficacy of DAF in preparing chiral QRs, engineering the surface charge of QDs, utilizing QR aggregates, and conjugating dense DNA onto cadmium‐free InP/ZnS QDs. DAF therefore offers a versatile solution for hydrophilic ligand functionalization of QDs and QRs applicable to diverse applications.more » « less
-
Abstract Incorporation of colloidal quantum emitters into silicon-based photonic devices would enable major advances in quantum optics. However, deterministic placement of individual sub-10 nm colloidal particles onto micron-sized photonic structures with nanometer-scale precision remains an outstanding challenge. Here, we introduce Cavity-Shape Modulated Origami Placement (CSMOP) that leverages the structural programmability of DNA origami to precisely deposit colloidal nanomaterials within lithographically-defined resist cavities. CSMOP enables clean and accurate patterning of origami templates onto photonic chips with high yields. Soft-silicification-passivation stabilizes deposited origamis, while preserving their binding sites to attach and align colloidal quantum rods (QRs) to control their nanoscale positions and emission polarization. We demonstrate QR integration with photonic device structures including waveguides, micro-ring resonators, and bullseye photonic cavities. CSMOP therefore offers a general platform for the integration of colloidal quantum materials into photonic circuits, with broad potential to empower quantum science and technology.more » « less
-
DNA nanotechnology has broad applications in biomedical drug delivery and pro- grammable materials. Characterization of the self-assembly of DNA origami and quan- tum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchi- cal nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multi-meric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of differ- ent multi-meric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the αγ positions (of the pentagon) make larger nanostructures than those with binding sites at the αβ positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis.more » « less
-
Abstract Driven by tensile strain, GaAs quantum dots (QDs) self-assemble on In0.52Al0.48As(111)A surfaces lattice-matched to InP substrates. In this study, we show that the tensile-strained self-assembly process for these GaAs(111)A QDs unexpectedly deviates from the well-known Stranski-Krastanov (SK) growth mode. Traditionally, QDs formed via the SK growth mode form on top of a flat wetting layer (WL) whose thickness is fixed. The inability to tune WL thickness has inhibited researchers’ attempts to fully control QD-WL interactions in these hybrid 0D-2D quantum systems. In contrast, using microscopy, spectroscopy, and computational modeling, we demonstrate that for GaAs(111)A QDs, we can continually increase WL thickness with increasing GaAs deposition, even after the tensile-strained QDs (TSQDs) have begun to form. This anomalous SK behavior enables simultaneous tuning of both TSQD size and WL thickness. No such departure from the canonical SK growth regime has been reported previously. As such, we can now modify QD-WL interactions, with future benefits that include more precise control of TSQD band structure for infrared optoelectronics and quantum optics applications.more » « less
An official website of the United States government

