Development of Thermal Metrology Standards for Experimental Characterization of Thermal Resistance for Single-Phase Liquid Cold Plates
- Award ID(s):
- 2209691
- PAR ID:
- 10537563
- Publisher / Repository:
- ASME INTERPACK
- Date Published:
- Format(s):
- Medium: X
- Location:
- San Diego, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Thermal interface material (TIM) that exists in a liquid state at the service temperature enables efficient heat transfer across two adjacent surfaces in electronic applications. In this work, the thermal conductivities of different phase regions in the Ga-In system at various compositions and temperatures are measured for the first time. A modified comparative cut bar technique is used for the measurement of the thermal conductivities of GaxIn1−x (x = 0, 0.1, 0.214, 0.3, and 0.9) alloys at 40, 60, 80, and 100 °C, the temperatures commonly encountered in consumer electronics. The thermal conductivity of liquid and semi-liquid (liquid + β) Ga-In alloys are higher than most of the TIM’s currently used in consumer electronics. These measured quantities, along with the available experimental data from literature, served as input for the thermal conductivity parameter optimization using the CALPHAD (calculation of phase diagrams) method for pure elements, solution phase, and two-phase region. A set of self-consistent parameters for the description of the thermal conductivity of the Ga-In system is obtained. There is good agreement between the measured and calculated thermal conductivities for all of the phases. Due to their ease of manufacturing and high thermal conductivity, liquid/semi-liquid Ga-In alloys have significant potential for TIM in consumer electronics.more » « less
-
Flexible thermal insulating membranes are ubiquitous in thermal management. Nevertheless, difficulties arise for composite membranes to combine a resilient, robust structural framework with uniform percolation networks purposefully conceived for thermal insulation. Herein, by controlling the microstructure homogeneity, we report flexible, hydrophobic thermal insulating membranes consisting of ceramic fiber and porous silica materials. The resulting nanofibrous membrane composites exhibit a low thermal insulation of 11.4 mW m−1 K−1, a low density of 0.245 g cm−3, mechanical flexibility with a bending rigidity of 1.25 cN mm−1, and hydrophobicity with a water contact angle of 144°. These nanofibrous-reinforced, silica-aerogel-based nanocomposite membranes are potential candidates for advanced thermal management applications.more » « less
-
Abstract The thermal equation of state (TEOS) for solids is a mathematic model among pressure, temperature and density, and is essential for geophysical, geochemical, and other high pressure–temperature (high P–T) researches. However, in the last few decades, there has been a growing concern about the accuracy of the pressure scales of the calibrants, and efforts have been made to improve it by either introducing a reference standard or building new thermal pressure models. The existing thermal equation of state,P(V,T) = P(V,T0) + Pth(V,T), consists of an isothermal compression and an isochoric heating, while the thermal pressure is the pressure change in the isochoric heating. In this paper, we demonstrate that, for solids in a soft pressure medium in a diamond anvil cell, the thermal pressure can neither be determined from a single heating process, nor from the thermal pressure of its calibrant. To avoid the thermal pressure, we propose to replace the thermal pressure with a well-known thermal expansion model, and integrate it with the isothermal compression model to yields a Birch–Murnaghan-expansion TEOS model, called VPT TEOS. The predicted pressure of MgO and Au at ambient pressure from Birch–Murnaghan-expansion VPT TEOS model matches the experimental pressure of zero (0) GPa very well, while the pressure prediction from the approximated Anderson PVT TEOS exhibit a big deviation and a wrong trend.more » « less
An official website of the United States government

