We do not understand how neural nodes operate and coordinate within the recurrent action-perception loops that characterize naturalistic self-environment interactions. Here, we record single-unit spiking activity and local field potentials (LFPs) simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and dorsolateral prefrontal cortex (dlPFC) as monkeys navigate in virtual reality to ‘catch fireflies’. This task requires animals to actively sample from a closed-loop virtual environment while concurrently computing continuous latent variables: (i) the distance and angle travelled (i.e., path integration) and (ii) the distance and angle to a memorized firefly location (i.e., a hidden spatial goal). We observed a patterned mixed selectivity, with the prefrontal cortex most prominently coding for latent variables, parietal cortex coding for sensorimotor variables, and MSTd most often coding for eye movements. However, even the traditionally considered sensory area (i.e., MSTd) tracked latent variables, demonstrating path integration and vector coding of hidden spatial goals. Further, global encoding profiles and unit-to-unit coupling (i.e., noise correlations) suggested a functional subnetwork composed by MSTd and dlPFC, and not between these and 7a, as anatomy would suggest. We show that the greater the unit-to-unit coupling between MSTd and dlPFC, the more the animals’ gaze position was indicative of the ongoing location of the hidden spatial goal. We suggest this MSTd-dlPFC subnetwork reflects the monkeys’ natural and adaptive task strategy wherein they continuously gaze toward the location of the (invisible) target. Together, these results highlight the distributed nature of neural coding during closed action-perception loops and suggest that fine-grain functional subnetworks may be dynamically established to subserve (embodied) task strategies.
more »
« less
Context-invariant beliefs are supported by dynamic reconfiguration of single unit functional connectivity in prefrontal cortex of male macaques
Abstract Natural behaviors occur in closed action-perception loops and are supported by dynamic and flexible beliefs abstracted away from our immediate sensory milieu. How this real-world flexibility is instantiated in neural circuits remains unknown. Here, we have male macaques navigate in a virtual environment by primarily leveraging sensory (optic flow) signals, or by more heavily relying on acquired internal models. We record single-unit spiking activity simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and the dorso-lateral prefrontal cortex (dlPFC). Results show that while animals were able to maintain adaptive task-relevant beliefs regardless of sensory context, the fine-grain statistical dependencies between neurons, particularly in 7a and dlPFC, dynamically remapped with the changing computational demands. In dlPFC, but not 7a, destroying these statistical dependencies abolished the area’s ability for cross-context decoding. Lastly, correlational analyses suggested that the more unit-to-unit couplings remapped in dlPFC, and the less they did so in MSTd, the less were population codes and behavior impacted by the loss of sensory evidence. We conclude that dynamic functional connectivity between neurons in prefrontal cortex maintain a stable population code and context-invariant beliefs during naturalistic behavior.
more »
« less
- Award ID(s):
- 1922658
- PAR ID:
- 10537582
- Publisher / Repository:
- nature communications
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Expression of the N-methyl-D-aspartate receptor, particularly when containing the GluN2B subunit (NMDAR-GluN2B), varies across the prefrontal cortex (PFC). In humans, the subgenual cingulate cortex (SGC) contains among the highest levels of NMDAR-GluN2B expression, while the dorsolateral prefrontal cortex (dlPFC) exhibits a more moderate level of NMDAR-GluN2B expression. NMDAR-GluN2B are commonly associated with ionotropic synaptic function and plasticity and are essential to the neurotransmission underlying working memory in the macaque dlPFC in the layer III circuits, which in humans are afflicted in schizophrenia. However, NMDAR-GluN2B can also be found at extrasynaptic sites, where they may trigger distinct events, including some linked to neurodegenerative processes. The SGC is an early site of tau pathology in sporadic Alzheimer’s disease (sAD), which mirrors its high NMDAR-GluN2B expression. Additionally, the SGC is hyperactive in depression, which can be treated with NMDAR antagonists. Given the clinical relevance of NMDAR in the SGC and dlPFC, the current study used immunoelectron microscopy (immunoEM) to quantitatively compare the synaptic and extrasynaptic expression patterns of NMDAR-GluN2B across excitatory and inhibitory neuron dendrites in rhesus macaque layer III SGC and dlPFC. We found a larger population of extrasynaptic NMDAR-GluN2B in dendrites of putative pyramidal neurons in SGC as compared to the dlPFC, while the dlPFC had a higher proportion of synaptic NMDAR-GluN2B. In contrast, in putative inhibitory dendrites from both areas, extrasynaptic expression of NMDAR-GluN2B was far more frequently observed over synaptic expression. These findings may provide insight into varying cortical vulnerability to alterations in excitability and neurodegenerative forces.more » « less
-
The primate dorsolateral prefrontal cortex (DLPFC) displays unique in vivo activity patterns, but how in vivo activity regulates DLPFC pyramidal neuron (PN) properties remains unclear. We assessed the effects of in vivo Kir2.1 overexpression, a genetic silencing tool, on synapses in monkey DLPFC PNs. We show for the first time that recombinant ion channel expression successfully modifies the excitability of primate cortex neurons, producing effects on synaptic properties apparently different from those in the rodent cortex.more » « less
-
Models of human categorization predict the prefrontal cortex (PFC) serves a central role in category learning. The dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) have been implicated in categorization; however, it is unclear whether both are critical for categorization and whether they support unique functions. We administered three categorization tasks to patients with PFC lesions (mean age, 69.6 years; 5 men, 5 women) to examine how the prefrontal subregions contribute to categorization. These included a rule-based (RB) task that was solved via a unidimensional rule, an information integration (II) task that was solved by combining information from two stimulus dimensions, and a deterministic/probabilistic (DP) task with stimulus features that had varying amounts of category-predictive information. Compared with healthy comparison participants, both patient groups had impaired performance. Impairments in the dlPFC patients were largest during the RB task, whereas impairments in the vmPFC patients were largest during the DP task. A hierarchical model was fit to the participants’ data to assess learning deficits in the patient groups. PFC damage was correlated with a regularization term that limited updates to attention after each trial. Our results suggest that the PFC, as a whole, is important for learning to orient attention to relevant stimulus information. The dlPFC may be especially important for rule-based learning, whereas the vmPFC may be important for focusing attention on deterministic (highly diagnostic) features and ignoring less predictive features. These results support overarching functions of the dlPFC in executive functioning and the vmPFC in value-based decision-making.more » « less
-
Abstract The think-aloud protocol provides researchers an insight into the designer's mental state, but little is understood about how thinking aloud influences design. The study presented in this paper sets out to measure the cognitive and neurocognitive changes in designers when thinking aloud. Engineering students (n=50) were randomly assigned to the think-aloud or control group. Students were outfitted with a functional near-infrared spectroscopy band. Students were asked to design a personal entertainment system. The think-aloud group spent significantly less time designing. Their design sketches included significantly fewer words. The think-aloud group also required significantly more resources in the left and right dorsolateral prefrontal cortex (DLPFC). The left DLPFC is often recruited for language processing, and the right DLPFC is involved in visual representation and problem-solving. The faster depletion of neurocognitive resources may have contributed to less time designing. Thinking aloud influences design cognition and neurocognition, but these effects are only now becoming apparent. More research and the adoption of neuroscience techniques can help shed light on these differences.more » « less
An official website of the United States government

