Co-locating solar photovoltaics (PV) with agriculture or natural vegetation could provide a sustainable solution to meeting growing food and energy demands, particularly considering the recent concerns of solar PV encroaching on agricultural and natural areas. However, the identification and quantification of the mutual interactions between the solar panels and the underlying soil-vegetation system are scarce. This is a critical research gap, as understanding these feedbacks are important for minimizing environmental impacts and for designing resource conserving and climate-resilient food-energy production systems. We monitored the microclimate, soil moisture distribution, and soil properties at three utility-scale solar facilities (MN, USA) with different site management practices, with an emphasis on verifying previously hypothesized vegetation-driven cooling of solar panels. The microclimatic variables (air and soil temperature, relative humidity, wind speed and direction) and soil moisture were significantly different between the PV site with bare soil (bare-PV) and vegetated PV (veg.-PV) site. Compared to the bare-PV site, the veg.-PV site also had significantly higher levels of total soil carbon and total soil nitrogen, as well as higher humidity and lower air and soil temperatures. Further, soil moisture heterogeneity created by the solar panels was homogenized by vegetation at the veg.-PV sites. However, we found no significant panel cooling or increase in electricity output that could be linked to co-location of the panels with vegetation in these facilities. We link these outcomes to the background climatic conditions (not water limited system) and soil moisture conditions. In regions with persistent high soil moisture (more frequent rainfall events) soil evaporation from wet bare soil may be comparable or even higher than from a vegetated surface. Thus, the cooling effects of vegetation on solar panels are not universal but rather site-specific depending on the background climate and soil properties. Regardless, the other co-benefits of maintaining vegetation at solar PV sites including the impacts on microclimate, soil moisture distribution, and soil quality support the case for solar PV–vegetation co-located systems.
more »
« less
Multi-year analysis of physical interactions between solar PV arrays and underlying soil-plant complex in vegetated utility-scale systems
Concerns over the land use changes impacts of solar photovoltaic (PV) development are increasing as PV energy development expands. Co-locating utility-scale solar energy with vegetation may maintain or rehabilitate the land's ability to provide ecosystem services. Previous studies have shown that vegetation under and around the panels may improve the performance of the co-located PV and that PV may create a favorable environment for the growth of vegetation. While there have been some pilot-scale experiments, the existence and magnitude of these benefits of vegetation has not been confirmed in a utility-scale PV facility over multiple years. In this study we use power output data coupled with microclimatic measurements in temperate climates to assess these potential benefits. This study combines multi-year microclimatic measurements to analyze the physical interactions between PV arrays and the underlying soil-vegetation system in three utility-scale PV facilities in Minnesota, USA. No significant cooling of PV panels or increased power production was observed in PV arrays with underlying vegetation. Fine soil particle fraction was the highest in soils within PV arrays with the vegetation which was attributable to the lowest wind speeds from the compounding suppression of wind by vegetation and PV arrays. Soil moisture and soil nutrient response to re-vegetation varied between PV facilities, which could be attributed to differing soil texture. No statistically significant vegetation-driven panel cooling was observed in this climate. This finding prompts a need for site-specific studies to identify contributing factors for environmental co-benefits in co-located systems.
more »
« less
- Award ID(s):
- 1943969
- PAR ID:
- 10537595
- Publisher / Repository:
- ScienceDirect
- Date Published:
- Journal Name:
- Applied Energy
- Volume:
- 365
- Issue:
- C
- ISSN:
- 0306-2619
- Page Range / eLocation ID:
- 123227
- Subject(s) / Keyword(s):
- Agrivoltaics ecosystem services evapotranspiration soil carbon solar energy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Co‐locating solar photovoltaics with vegetation could provide a sustainable solution to meeting growing food and energy demands. However, studies quantifying multiple co‐benefits resulting from maintaining vegetation at utility‐scale solar power plants are limited. We monitored the microclimate, soil moisture, panel temperature, electricity generation and soil properties at a utility‐scale solar facility in a continental climate with different site management practices. The compounding effect of photovoltaic arrays and vegetation may homogenize soil moisture distribution and provide greater soil temperature buffer against extreme temperatures. The vegetated solar areas had significantly higher soil moisture, carbon, and other nutrients compared to bare solar areas. Agrivoltaics in agricultural areas with carbon debt can be an effective climate mitigation strategy along with revitalizing agricultural soils, generating income streams from fallow land, and providing pollinator habitats. However, the benefits of vegetation cooling effects on electricity generation are rather site‐specific and depend on the background climate and soil properties. Overall, our findings provide foundational data for site preservation along with targeting site‐specific co‐benefits, and for developing climate resilient and resource conserving agrivoltaic systems.more » « less
-
Solar energy development is land intensive and recent studies have demonstrated the negative impacts of large-scale solar deployment on vegetation and soil. Co-locating vegetation with managed grazing on utility scale solar PV sites could provide a sustainable solution to meeting the growing food and energy demands, along with providing several co-benefits. However, the impacts of introducing grazing on soil properties at vegetated solar PV sites are not well understood. To address this knowledge gap, we investigated the impacts of episodic sheep grazing on soil properties (micro and macro nutrients, carbon storage, soil grain size distribution) at six commercial solar PV sites (MN, USA) and compared that to undisturbed control sites. Results indicate that implementing managed sheep grazing significantly increased total carbon storage (10-80%) and available nutrients, and the magnitude of change correlated with the grazing frequency (1-5 years) at the study sites. Furthermore, it was found that sites that experienced consecutive annual grazing treatments benefitted more than intermittently grazed sites. The findings will help in designing resource conserving integrated solar energy and food/fodder systems, along with increasing soil quality and carbon sequestration.more » « less
-
Synopsis Wind can significantly influence heat and water exchange between organisms and their environment, yet microclimatic variation in wind is often overlooked in models forecasting the effects of environmental change on organismal performance. Accounting for the effects of wind may become even more critical given the anticipated changes in wind speed across the planet as climates continue to warm. In this study, we first assessed how wind speed varies across the planet and how wind speed may change under climate warming at macroclimatic scales. We also used microclimatic data to assess how wind speed changes temporally throughout the day and year as well as the relationship between wind speed, temperature, and standard deviation in each environmental variable using data from weather stations in North America. Finally, we used a suite of biophysical simulations to understand how wind speed (and its interactions with other environmental variables and organismal traits) affects the temperatures and rates of water loss that plants and animals experience at a microclimatic scale. We found substantial latitudinal variation in wind speed and the change in wind speed under climate change, demonstrating that temperate regions are predicted to experience simultaneous warming and reductions in wind speed. From the microclimatic data, we also found that wind speed is positively associated with temperature and temperature variability, indicating that the effects of wind speed may become more challenging to predict under future warming scenarios. The biophysical simulations demonstrated that convective and evaporative cooling from wind interacts strongly with organismal traits (such as body size, solar absorptance, and conductance) and the heating effects of solar radiation to shape heat and water fluxes in terrestrial plants and animals. In many cases, the effect of wind (or its interaction with other variables) was comparable to the effects of air temperature or solar radiation. Understanding these effects will be important for predicting the ecological impacts of climate change and for explaining clinal variation in traits that have evolved across a range of thermal environments.more » « less
-
Integrating PV panels as a source of clean energy has been a widely established method to achieve net-zero energy (NZE) buildings. The exterior envelope of the high-rise buildings can serve as the best place to integrate PV panels for utilizing solar energy. The taller the building, the higher the potential to utilize solar energy by PV panels. However, shadows casting on the BIPV façade systems are unavoidable as they are often subject to partial shades from panels self-shading as well as building walls. Partial shading or ununiform solar radiation on the PV surface causes a dramatic decrease in the current output of the circuit. For that reason, in BIPV facades the default circuit connection of manufactured PV panels does not output maximum power under partial shading conditions. This paper investigates the different circuit connections in BIPV façade system to achieve higher energy yields while addressing design requirements. To this end, PV power production in different circuit connection reconfiguration scenarios was explored in two levels of BIPV components: 1) PV cells, and 2) strings of PV cells. Experimental tests conducted to validate the simulation results. The results of this study indicated that the maximum power generation occurred when the circuit connection between cells within a string is series, and the circuit connection between the strings within a PV panel is parallel. Results of the experimental tests shown that the series-parallel circuit connection increases the energy yields of the BIPV facades 71 times in real-world applications. The comparison analysis of the Ladybug energy simulations and the proposed analysis Grasshopper analysis recipe power output showed that the developed Grasshopper script will increase the BIPVs energy yields by 90% in simulations.more » « less
An official website of the United States government

