skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Managed sheep grazing can improve soil quality and carbon sequestration at solar photovoltaic sites
Solar energy development is land intensive and recent studies have demonstrated the negative impacts of large-scale solar deployment on vegetation and soil. Co-locating vegetation with managed grazing on utility scale solar PV sites could provide a sustainable solution to meeting the growing food and energy demands, along with providing several co-benefits. However, the impacts of introducing grazing on soil properties at vegetated solar PV sites are not well understood. To address this knowledge gap, we investigated the impacts of episodic sheep grazing on soil properties (micro and macro nutrients, carbon storage, soil grain size distribution) at six commercial solar PV sites (MN, USA) and compared that to undisturbed control sites. Results indicate that implementing managed sheep grazing significantly increased total carbon storage (10-80%) and available nutrients, and the magnitude of change correlated with the grazing frequency (1-5 years) at the study sites. Furthermore, it was found that sites that experienced consecutive annual grazing treatments benefitted more than intermittently grazed sites. The findings will help in designing resource conserving integrated solar energy and food/fodder systems, along with increasing soil quality and carbon sequestration.  more » « less
Award ID(s):
1943969
PAR ID:
10341233
Author(s) / Creator(s):
Date Published:
Journal Name:
AGU 2021 Fall Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Co-locating solar photovoltaics (PV) with agriculture or natural vegetation could provide a sustainable solution to meeting growing food and energy demands, particularly considering the recent concerns of solar PV encroaching on agricultural and natural areas. However, the identification and quantification of the mutual interactions between the solar panels and the underlying soil-vegetation system are scarce. This is a critical research gap, as understanding these feedbacks are important for minimizing environmental impacts and for designing resource conserving and climate-resilient food-energy production systems. We monitored the microclimate, soil moisture distribution, and soil properties at three utility-scale solar facilities (MN, USA) with different site management practices, with an emphasis on verifying previously hypothesized vegetation-driven cooling of solar panels. The microclimatic variables (air and soil temperature, relative humidity, wind speed and direction) and soil moisture were significantly different between the PV site with bare soil (bare-PV) and vegetated PV (veg.-PV) site. Compared to the bare-PV site, the veg.-PV site also had significantly higher levels of total soil carbon and total soil nitrogen, as well as higher humidity and lower air and soil temperatures. Further, soil moisture heterogeneity created by the solar panels was homogenized by vegetation at the veg.-PV sites. However, we found no significant panel cooling or increase in electricity output that could be linked to co-location of the panels with vegetation in these facilities. We link these outcomes to the background climatic conditions (not water limited system) and soil moisture conditions. In regions with persistent high soil moisture (more frequent rainfall events) soil evaporation from wet bare soil may be comparable or even higher than from a vegetated surface. Thus, the cooling effects of vegetation on solar panels are not universal but rather site-specific depending on the background climate and soil properties. Regardless, the other co-benefits of maintaining vegetation at solar PV sites including the impacts on microclimate, soil moisture distribution, and soil quality support the case for solar PV–vegetation co-located systems. 
    more » « less
  2. Abstract Co‐locating solar photovoltaics with vegetation could provide a sustainable solution to meeting growing food and energy demands. However, studies quantifying multiple co‐benefits resulting from maintaining vegetation at utility‐scale solar power plants are limited. We monitored the microclimate, soil moisture, panel temperature, electricity generation and soil properties at a utility‐scale solar facility in a continental climate with different site management practices. The compounding effect of photovoltaic arrays and vegetation may homogenize soil moisture distribution and provide greater soil temperature buffer against extreme temperatures. The vegetated solar areas had significantly higher soil moisture, carbon, and other nutrients compared to bare solar areas. Agrivoltaics in agricultural areas with carbon debt can be an effective climate mitigation strategy along with revitalizing agricultural soils, generating income streams from fallow land, and providing pollinator habitats. However, the benefits of vegetation cooling effects on electricity generation are rather site‐specific and depend on the background climate and soil properties. Overall, our findings provide foundational data for site preservation along with targeting site‐specific co‐benefits, and for developing climate resilient and resource conserving agrivoltaic systems. 
    more » « less
  3. Concerns over the land use changes impacts of solar photovoltaic (PV) development are increasing as PV energy development expands. Co-locating utility-scale solar energy with vegetation may maintain or rehabilitate the land's ability to provide ecosystem services. Previous studies have shown that vegetation under and around the panels may improve the performance of the co-located PV and that PV may create a favorable environment for the growth of vegetation. While there have been some pilot-scale experiments, the existence and magnitude of these benefits of vegetation has not been confirmed in a utility-scale PV facility over multiple years. In this study we use power output data coupled with microclimatic measurements in temperate climates to assess these potential benefits. This study combines multi-year microclimatic measurements to analyze the physical interactions between PV arrays and the underlying soil-vegetation system in three utility-scale PV facilities in Minnesota, USA. No significant cooling of PV panels or increased power production was observed in PV arrays with underlying vegetation. Fine soil particle fraction was the highest in soils within PV arrays with the vegetation which was attributable to the lowest wind speeds from the compounding suppression of wind by vegetation and PV arrays. Soil moisture and soil nutrient response to re-vegetation varied between PV facilities, which could be attributed to differing soil texture. No statistically significant vegetation-driven panel cooling was observed in this climate. This finding prompts a need for site-specific studies to identify contributing factors for environmental co-benefits in co-located systems. 
    more » « less
  4. Abstract. Relationships between land use and water quality are complex with interdependencies, feedbacks, and legacy effects. Most river water quality studies have assessed catchment land use as areal coverage, but here, we hypothesize and test whether land use intensity – the inputs (fertilizer, livestock) and activities (vegetation removal) of land use – is a better predictor of environmental impact. We use New Zealand (NZ) as a case study because it has had one of the highest rates of agricultural land intensification globally over recent decades. We interpreted water quality state and trends for the 26 years from 1989 to 2014 in the National Rivers Water Quality Network (NRWQN) – consisting of 77 sites on 35 mostly large river systems. To characterize land use intensity, we analyzed spatial and temporal changes in livestock density and land disturbance (i.e., bare soil resulting from vegetation loss by either grazing or forest harvesting) at the catchment scale, as well as fertilizer inputs at the national scale. Using simple multivariate statistical analyses across the 77 catchments, we found that median visual water clarity was best predicted inversely by areal coverage of intensively managed pastures. The primary predictor for all four nutrient variables (TN, NOx, TP, DRP), however, was cattle density, with plantation forest coverage as the secondary predictor variable. While land disturbance was not itself a strong predictor of water quality, it did help explain outliers of land use–water quality relationships. From 1990 to 2014, visual clarity significantly improved in 35 out of 77 (34∕77) catchments, which we attribute mainly to increased dairy cattle exclusion from rivers (despite dairy expansion) and the considerable decrease in sheep numbers across the NZ landscape, from 58 million sheep in 1990 to 31 million in 2012. Nutrient concentrations increased in many of NZ's rivers with dissolved oxidized nitrogen significantly increasing in 27∕77 catchments, which we largely attribute to increased cattle density and legacy nutrients that have built up on intensively managed grasslands and plantation forests since the 1950s and are slowly leaking to the rivers. Despite recent improvements in water quality for some NZ rivers, these legacy nutrients and continued agricultural intensification are expected to pose broad-scale environmental problems for decades to come. 
    more » « less
  5. Abstract Large grazers modify vegetated ecosystems and are increasingly viewed as keystone species in trophic rewilding schemes. Yet, as their ecosystem influences are context‐dependent, a crucial challenge is identifying where grazers sustain, versus undermine, important ecosystem properties and their resilience.Previous work in diverse European saltmarshes found that, despite changing plant and invertebrate community structure, grazers do not suppress below‐ground properties, including soil organic carbon (SOC). We hypothesised that, in contrast, eastern US saltmarshes would be sensitive to large grazers as extensive areas are dominated by a single grass,Spartina alterniflora. We predicted that grazers would reduce above‐ and below‐groundSpartinabiomass, suppress invertebrate densities, shift soil texture and ultimately reduce SOC concentration.We tested our hypotheses using a replicated 51‐month large grazer (horse) exclusion experiment in Georgia, coupled with observations of 14 long‐term grazed sites, spanning ~1000 km of the eastern US coast.Grazer exclusion quickly led to increasedSpartinaheight, cover and flowering, and increased snail density. Changes in vegetation structure were reflected in modified soil texture (reduced sand, increased clay) and elevated root biomass, yet we found no response of SOC. Large grazer exclusion also reduced drought‐associated vegetation die‐off.We also observed vegetation shifts in sites along the eastern US seaboard where grazing has occurred for hundreds of years. Unlike in the exclusion experiment, long‐term grazing was associated with reduced SOC. A structural equation model implicated grazing by revealing reduced stem height as a key driver of reduced soil organic carbon.Synthesis: These results illustrate the context dependency of large grazer impacts on ecosystem properties in coastal wetlands. In contrast to well‐studied European marshes, eastern US marshes are dominated and structured by a single foundational grass species resulting in vegetation and soil properties being more sensitive to grazing. Coastal systems characterised by a single foundation species might be inherently vulnerable to large grazers and lack resilience in the face of other disturbances, underlining that frameworks to explain and predict large grazer impacts must account for geographic variation in ecosystem structure. 
    more » « less