skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Amazon Basin’s rivers and lakes support Nearctic-breeding shorebirds during southward migration
Abstract Identifying the migration routes and stopover sites used by declining species is critical for developing targeted conservation actions. Long-distance migratory shorebirds are among the groups of birds declining most rapidly, yet we frequently lack detailed knowledge about the routes and stopover sites they use during their hemisphere-spanning migrations. This is especially true for species that migrate through mid-continental regions in the Western Hemisphere. We therefore used satellite transmitters to track 212 individuals of 6 shorebird species during their southward migrations—Pluvialis dominica (American Golden-Plover), Limosa haemastica (Hudsonian Godwit), Tringa flavipes (Lesser Yellowlegs), and Calidris subruficollis (Buff-breasted Sandpiper), C. melanotos (Pectoral Sandpiper), and Bartramia longicauda (Upland Sandpiper)—as they crossed the Amazon Basin of South America, a region from which reports of shorebird numbers are increasing but remain relatively rare. Our results make clear that the Amazon Basin provides stopover habitat for a large number of shorebirds: more than 74% of individuals tracked crossing the Amazon Basin stopped over in the region for an average of 2–14 days, with some spending the entire nonbreeding season there. All species selected stopover sites along the region’s many rivers and lakes, while within stopover sites each species exhibited distinct habitat preferences. The timing of stopovers within sub-basins of the Amazon Basin also coincided with periods of low water, when the muddy, shallow water habitats preferred by most shorebirds are likely plentiful. Together, our results highlight the need for detailed investigations into shorebird abundance and distribution within the Amazon Basin, threats to shorebirds within particular subbasins, and links between shorebird conservation efforts and those targeting the myriad other species that inhabit this dynamic, hyper-diverse region.  more » « less
Award ID(s):
2318983
PAR ID:
10537606
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Ornithological Applications
ISSN:
0010-5422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Winger, Benjamin M; Edwards, Scott V (Ed.)
    Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions. 
    more » « less
  2. Romanach, Stephanie S (Ed.)
    Atlantic ghost crabs (Ocypode quadrata) are predators of beach-nesting shorebird nests and chicks on the United States’ Atlantic and Gulf coasts. Ghost crabs may also disturb birds, altering foraging, habitat use, or nest and brood attendance patterns. Shorebird conservation strategies often involve predator and disturbance management to improve reproductive success, but efforts rarely target ghost crabs. Despite the threat to shorebird reproductive success, ghost crabs are a poorly understood part of the beach ecosystem and additional knowledge about ghost crab habitat selection is needed to inform shorebird conservation. We monitored ghost crab activity, defined as burrow abundance, throughout the shorebird breeding season on Metompkin Island, Virginia, an important breeding site for piping plovers (Charadrius melodus) and American oystercatchers (Haematopus palliatus). We counted burrows at shorebird nests and random locations throughout the breeding season and investigated whether ghost crab activity was greater at nest sites relative to random locations without shorebird nests. While we observed burrows at all nest sites (n= 63 nests), we found that burrow counts were lower at piping plover nests with shell cover, relative to random locations with no shell cover. Ghost crabs may avoid piping plover nest sites due to anti-predator behaviors from incubating adults or differences in microhabitat characteristics selected by piping plovers. We also investigated the effects of habitat type, date, and air temperature on the abundance of ghost crab burrows. We found that while crab burrows were present across the barrier island landscape, there were more burrows in sandy, undisturbed habitats behind the dunes, relative to wave-disturbed beach. Additionally, ghost crab activity increased later in the shorebird breeding season. Understanding when and where ghost crabs are most likely to be active in the landscape can aid decision-making to benefit imperiled shorebird populations. 
    more » « less
  3. Abstract The Amazon floodplains represent important surfaces of highly valuable ecosystems, yet they remain neglected from protected areas. Although the efficiency of the protected area network of the Amazon basin may be jeopardized by climate change, floodplains are exposed to important consequences of climate change but are omitted from species distribution models and protection gap analyses.The present and future (2070) distribution of the giant bony‐tongue fishArapaimaspp. (Arapaimidae) was modelled accounting for climate and habitat requirements, and with a consideration of dam presence (already existing and planned constructions) and hydroperiod (high‐ and low‐water stages). The amount of suitable environment that falls inside and outside the current network of protected areas was quantified to identify spatial conservation gaps.We predict that climate change will cause a decline in environmental suitability by 16.6% during the high‐water stage, and by 19.4% during the low‐water stage. About 70% of the suitable environments ofArapaimaspp. remain currently unprotected. The gap is higher by 0.7% during the low‐water stage. The lack of protection is likely to increase by 5% with future climate change effects. Both existing and projected dam constructions may hamper population flows between the central, Bolivian and Peruvian parts of the basin.We highlight protection gaps mostly in the south‐western part of the basin and recommend the extension of the current network of protected areas in the floodplains of the upper Ucayali, Juruà and Purus rivers and their tributaries. This study has shown the importance of integrating hydroperiod and dispersal barriers in forecasting the distribution of freshwater fish species, and stresses the urgent need to integrate floodplains within the protected area networks. 
    more » « less
  4. Beginning ~3,500 to 3,300 y B.P., humans voyaged into Remote Oceania. Radiocarbon-dated archaeological evidence coupled with cultural, linguistic, and genetic traits indicates two primary migration routes: a Southern Hemisphere and a Northern Hemisphere route. These routes are separated by low-lying, equatorial atolls that were settled during secondary migrations ~1,000 y later after their exposure by relative sea-level fall from a mid-Holocene highstand. High volcanic islands in the Federated States of Micronesia (Pohnpei and Kosrae) also lie between the migration routes and settlement is thought to have occurred during the secondary migrations despite having been above sea level during the initial settlement of Remote Oceania. We reconstruct relative sea level on Pohnpei and Kosrae using radiocarbon-dated mangrove sediment and show that, rather than falling, there was a ~4.3-m rise over the past ~5,700 y. This rise, likely driven by subsidence, implies that evidence for early settlement could lie undiscovered below present sea level. The potential for earlier settlement invites reinterpretation of migration pathways into Remote Oceania and monument building. The UNESCO World Heritage sites of Nan Madol (Pohnpei) and Leluh (Kosrae) were constructed when relative sea level was ~0.94 m (~770 to 750 y B.P.) and ~0.77 m (~640 to 560 y B.P.) lower than present, respectively. Therefore, it is unlikely that they were originally constructed as islets separated by canals filled with ocean water, which is their prevailing interpretation. Due to subsidence, we propose that these islands and monuments are more vulnerable to future relative sea-level rise than previously identified. 
    more » « less
  5. The dynamic weather conditions that migrating birds experience during flight likely influence where they stop to rest and refuel, particularly after navigating inhospitable terrain or large water bodies, but effects of weather on stopover patterns remain poorly studied. We examined the influence of broad-scale weather conditions encountered by nocturnally migrating Nearctic-Neotropical birds during northward flight over the Gulf of Mexico (GOM) on subsequent coastal stopover distributions. We categorized nightly weather patterns using historic maps and quantified region-wide densities of birds in stopover habitat with data collected by 10 weather surveillance radars from 2008 to 2015. We found spring weather patterns over the GOM were most often favorable for migrating birds, with winds assisting northward flight, and document regional stopover patterns in response to specific unfavorable weather conditions. For example, Midwest Continental High is characterized by strong northerly winds over the western GOM, resulting in high-density concentrations of migrants along the immediate coastlines of Texas and Louisiana. We show, for the first time, that broad-scale weather experienced during flight influences when and where birds stop to rest and refuel. Linking synoptic weather patterns encountered during flight with stopover distributions contributes to the emerging macro-ecological understanding of bird migration, which is critical to consider in systems undergoing rapid human-induced changes. 
    more » « less