skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 13, 2025

Title: Biotic and abiotic factors affecting Atlantic ghost crab (Ocypode quadrata) spatiotemporal activity at an important shorebird nesting site in Virginia

Atlantic ghost crabs (Ocypode quadrata) are predators of beach-nesting shorebird nests and chicks on the United States’ Atlantic and Gulf coasts. Ghost crabs may also disturb birds, altering foraging, habitat use, or nest and brood attendance patterns. Shorebird conservation strategies often involve predator and disturbance management to improve reproductive success, but efforts rarely target ghost crabs. Despite the threat to shorebird reproductive success, ghost crabs are a poorly understood part of the beach ecosystem and additional knowledge about ghost crab habitat selection is needed to inform shorebird conservation. We monitored ghost crab activity, defined as burrow abundance, throughout the shorebird breeding season on Metompkin Island, Virginia, an important breeding site for piping plovers (Charadrius melodus) and American oystercatchers (Haematopus palliatus). We counted burrows at shorebird nests and random locations throughout the breeding season and investigated whether ghost crab activity was greater at nest sites relative to random locations without shorebird nests. While we observed burrows at all nest sites (n= 63 nests), we found that burrow counts were lower at piping plover nests with shell cover, relative to random locations with no shell cover. Ghost crabs may avoid piping plover nest sites due to anti-predator behaviors from incubating adults or differences in microhabitat characteristics selected by piping plovers. We also investigated the effects of habitat type, date, and air temperature on the abundance of ghost crab burrows. We found that while crab burrows were present across the barrier island landscape, there were more burrows in sandy, undisturbed habitats behind the dunes, relative to wave-disturbed beach. Additionally, ghost crab activity increased later in the shorebird breeding season. Understanding when and where ghost crabs are most likely to be active in the landscape can aid decision-making to benefit imperiled shorebird populations.

 
more » « less
Award ID(s):
1832221
PAR ID:
10547749
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Romanach, Stephanie S
Publisher / Repository:
PLOS
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
8
ISSN:
1932-6203
Page Range / eLocation ID:
e0307821
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Shorebird reproductive success monitoring often relies on surveys of nest and brood survival. However, conclusions may be inaccurate due to the challenges of gathering and interpreting evidence of nest and brood fate. We tested the efficacy of in-person versus camera- based monitoring to quantify productivity and evaluate threats to reproductive success of American Oystercatchers (Haematopus palliatus) and Piping Plovers (Charadrius melodus) at Metompkin Island, Virginia. We deployed 73 cameras using three set-ups: at nests, at brood sites, and along a transect. The same areas were also surveyed in-person approximately once per week. Camera monitoring confirmed nest fate where in-person monitors could not determine fate from field evidence and provided insight to the effectiveness of mammalian predator removal. However, cameras failed to capture causes of mortality for mobile chicks and did not consistently document chicks where in-person monitoring confirmed successful broods. Cameras produced large quantities of data requiring 63.5–315 hours to review, depending on camera set- up. We found cameras were useful for validating conclusions from in-person monitoring, highlighting threats that surveys missed, and characterizing the predator community. Managers should consider the tradeoff between potential benefits and required effort of camera monitoring when deciding which method would be effective for meeting management goals. 
    more » « less
  2. Fusi, Marco (Ed.)
    Behavioral thermoregulation is an important defense against the negative impacts of climate change for ectotherms. In this study we examined the use of burrows by a common intertidal crab, Minuca pugnax , to control body temperature. To understand how body temperatures respond to changes in the surface temperature and explore how efficiently crabs exploit the cooling potential of burrows to thermoregulate, we measured body, surface, and burrow temperatures during low tide on Sapelo Island, GA in March, May, August, and September of 2019. We found that an increase in 1°C in the surface temperature led to a 0.70-0.71°C increase in body temperature for females and an increase in 0.75-0.77°C in body temperature for males. Body temperatures of small females were 0.3°C warmer than large females for the same surface temperature. Female crabs used burrows more efficiently for thermoregulation compared to the males. Specifically, an increase of 1°C in the cooling capacity (the difference between the burrow temperature and the surface temperature) led to an increase of 0.42-0.50°C for females and 0.34-0.35°C for males in the thermoregulation capacity (the difference between body temperature and surface temperature). The body temperature that crabs began to use burrows to thermoregulate was estimated to be around 24°C, which is far below the critical body temperatures that could lead to death. Many crabs experience body temperatures of 24°C early in the reproductive season, several months before the hottest days of the year. Because the use of burrows involves fitness trade-offs, these results suggest that warming temperatures could begin to impact crabs far earlier in the year than expected. 
    more » « less
  3. The Arctic Coastal Plain is one of the most important avian breeding grounds in the world; however, many species are in decline. Arctic‐breeding birds contend with short breeding seasons, harsh climatic conditions, and now, rapidly changing, variable, and unpredictable environmental conditions caused by climate change. Additionally, those breeding in industrial areas may be impacted by human activities. It is difficult to separate the impacts of industrial development and climate change; however, long‐term datasets can help show patterns over time. We evaluated factors influencing reproductive parameters of breeding birds at Prudhoe Bay, Alaska, 2003–2019, by monitoring 1265 shorebird nests, 378 passerine nests, and 231 waterfowl nests. We found that nest survival decreased significantly nearer high‐use infrastructure for all guilds. Temporally, passerine nest survival declined across the 17 years of the study, while there was no significant evidence of change in their nest density. Shorebird nest survival did not vary significantly across years, nor did nest density. Waterfowl nest density increased over the course of the study, but we could not estimate nest survival in all years. Egg predator populations varied across time; numbers of gulls and ravens increased in the oilfields 2003–2019, while Arctic fox decreased, and jaeger numbers did not vary significantly. Long‐term datasets are rare in the Arctic, but they are crucial for understanding impacts to breeding birds from both climate change and increasing anthropogenic activities. We show that nest survival was lower for birds nesting closer to high‐use infrastructure in Arctic Alaska, which was not detected in earlier, shorter‐term studies. Additionally, we show that Lapland longspur nest survival decreased across time, in concert with continent‐wide declines in many passerine species. The urgency to understand these relationships cannot be expressed strongly enough, given change is continuing to happen and the potential impacts are large. 
    more » « less
  4. Abstract

    Human activities and climate change threaten seabirds globally, and many species are declining from already small breeding populations. Monitoring of breeding colonies can identify population trends and important conservation concerns, but it is a persistent challenge to achieve adequate coverage of remote and sensitive breeding sites. Southern giant petrels (Macronectes giganteus) exemplify this challenge: as polar, pelagic marine predators they are subject to a variety of anthropogenic threats, but they often breed in remote colonies that are highly sensitive to disturbance. Aerial remote sensing can overcome some of these difficulties to census breeding sites and explore how local environmental factors influence important characteristics such as nest-site selection and chick survival. To this end, we used drone photography to map giant petrel nests, repeatedly evaluate chick survival and quantify-associated physical and biological characteristics of the landscape at two neighboring breeding sites on Humble Island and Elephant Rocks, along the western Antarctic Peninsula in January–March 2020. Nest sites occurred in areas with relatively high elevations, gentle slopes, and high wind exposure, and statistical models predicted suitable nest-site locations based on local spatial characteristics, explaining 72.8% of deviance at these sites. These findings demonstrate the efficacy of drones as a tool to identify, map, and monitor seabird nests, and to quantify important habitat associations that may constitute species preferences or sensitivities. These may, in turn, contextualize some of the diverse population trajectories observed for this species throughout the changing Antarctic environment.

     
    more » « less
  5. Abstract

    According to the ‘selfish herd’ hypothesis, most seabird species breed colonially so that individuals can decrease their risk of predation by forming compact groups. However, costs and benefits associated with colonial breeding may not be evenly distributed among individuals within a colony. At Adélie penguin colonies, individuals nesting on the periphery of subcolonies (distinct groups of nests) may experience higher rates of nest predation by south polar skuas, and thus the optimal aggregation pattern for Adélie penguins may be within groups that minimize the proportion of edge nests. Nevertheless, some penguins choose to nest solitarily, at significant distances from conspecifics. We tracked 50 of these “solitary-nesting” Adélie penguins at Cape Crozier, a large colony on Ross Island, during the 2021 nesting season and compared their breeding success to individuals nesting within subcolony boundaries. We found that both solitary and subcolony nests successfully raised chicks large enough to join crèches and left unattended by adults. However, chicks from solitary nests exhibited a rate of mortality more than six times higher during the transition from nest brooding/guarding to crèche stage. In the 2022 nesting season, we found that solitary nests which had previously hosted actively breeding penguins were more likely to be re-occupied. Solitary nesting therefore appears to be a less-successful alternative to breeding within subcolonies, but enough individuals could be successful with this approach to maintain the apparently disadvantageous behavior and effectively pioneer previously unused locations, possibly including eventual new colony locations.

     
    more » « less