This content will become publicly available on August 1, 2025
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyse a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behaviour to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
more » « less- Award ID(s):
- 2113069
- PAR ID:
- 10537608
- Publisher / Repository:
- The Royal Society Publishing
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Mammalian locomotion is generated by central pattern generators (CPGs) in the spinal cord, which produce alternating flexor and extensor activities controlling the locomotor movements of each limb. Afferent feedback signals from the limbs are integrated by the CPGs to provide adaptive control of locomotion. Responses of CPG-generated neural activity to afferent feedback stimulation have been previously studied during fictive locomotion in immobilized cats. Yet, locomotion in awake, behaving animals involves dynamic interactions between central neuronal circuits, afferent feedback, musculoskeletal system, and environment. To study these complex interactions, we developed a model simulating interactions between a half-center CPG and the musculoskeletal system of a cat hindlimb. Then, we analyzed the role of afferent feedback in the locomotor adaptation from a dynamic viewpoint using the methods of dynamical systems theory and nullcline analysis. Our model reproduced limb movements during regular cat walking as well as adaptive changes of these movements when the foot steps into a hole. The model generates important insights into the mechanism for adaptive locomotion resulting from dynamic interactions between the CPG-based neural circuits, the musculoskeletal system, and the environment.more » « less
-
ABSTRACT Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) – systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers – and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.
-
Abstract Existing models of human walking use low-level reflexes or neural oscillators to generate movement. While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these models lack the ability to change their movement patterns or spontaneously generate new movements in the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular model of human locomotion that bridges this gap and combines the ability to execute goal directed movements with the generation of stable, rhythmic movement patterns that are required for robust locomotion. The model represents goals for voluntary movements of the swing leg on the task level of swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the task level and transformed into descending motor commands that execute the planned movements, using internal models. The movement goals and plans are updated in real time based on sensory feedback and task constraints. On the spinal level, the descending commands during the swing phase are integrated with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence. During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level reflexes and a behavioral organization switching between swing and stance control for each leg. With this combination of reflex-based stance leg and voluntary, goal-directed control of the swing leg, the model controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly updated in real-time to step over or around obstacles.
-
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control.more » « less
-
Neuronal circuits in the spinal cord are essential for the control of locomotion. They integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. For several decades, computational modeling has complemented experimental studies by providing a mechanistic rationale for experimental observations and by deriving experimentally testable predictions. This symbiotic relationship between experimental and computational approaches has resulted in numerous fundamental insights. With recent advances in molecular and genetic methods, it has become possible to manipulate specific constituent elements of the spinal circuitry and relate them to locomotor behavior. This has led to computational modeling studies investigating mechanisms at the level of genetically defined neuronal populations and their interactions. We review literature on the spinal locomotor circuitry from a computational perspective. By reviewing examples leading up to and in the age of molecular genetics, we demonstrate the importance of computational modeling and its interactions with experiments. Moving forward, neuromechanical models with neuronal circuitry modeled at the level of genetically defined neuronal populations will be required to further unravel the mechanisms by which neuronal interactions lead to locomotor behavior.more » « less