Wind erosion and dust emissions affect regions of the world with sparse vegetation cover or affected by agricultural practices that expose the soil surface to wind action. Research in this field has investigated the impact of soil moisture, land use, and land cover on soil susceptibility to wind erosion and dust emissions. The effect of soil salinity and sodicity, however, remains poorly appreciated. Salt accumulation in agricultural soils is a major concern in agroecosystems with high evaporative demand, shallow water tables or irrigated with water rich in dissolved solids. The understanding of how salts can affect aeolian processes in arid and hyper-arid landscapes remains incomplete. Recent studies focused on the effect of soil salinity on soil erodibility in dry atmospheric conditions, while the effect of soil sodicity and more humid conditions still needs to be investigated. Here we use wind tunnel tests to detect the effect of varying atmospheric humidity on wind erodibility and particulate matter emissions under saline and sodic conditions.Through a series of controlled wind tunnel experiments of soils treated with different concentrations of saline and sodic water, we find that the threshold velocity for wind erosion significantly increases with increasing soil salinity and sodicity, provided that the soil crust formed by soil salts is not disturbed. Indeed, with increasing soil salinity, the formation of a soil crust of increasing strength is observed, leading to an increase in the threshold wind velocity and a consequent decrease in particulate emissions. However, if the crust is destroyed by trampling, no significant changes in threshold velocity for wind erosion are found with increasing salinity and sodicity levels. Interestingly, after the threshold velocity was exceeded, soil crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions in saline and sodic soils compared to their untreated ('control') counterparts. Finally, understanding the role of atmospheric humidity under changing climate scenarios will help to modulate the wind erosion processes in saline-sodic soils and will help mitigate better dust emissions and soil management policies in arid and semi-arid climate zones.
more »
« less
Preferential Emission of Microplastics from Biosolid-Applied Agricultural Soils: Field Evidence and Theoretical Framework
Land application of wastewater biosolids on agricultural soils is suggested as a sustainable pathway to support the circular economy; however, this practice often enriches microplastics and associated contaminants in topsoil. Wind could transport these contaminated microplastics, thereby increasing their inhalation health risks. Analyzing wind-borne sediments collected from wind tunnel experiments on biosolid-applied agricultural fields, we show enrichment of microplastics in wind-blown sediments. We explain this preferential transport and enrichment of microplastics by using a theoretical framework. This framework reveals how the combined effects of the low density of microplastics and weakened wet-bonding interparticle forces between microplastics and soil particles lower their threshold velocity, the minimum wind velocity necessary for wind erosion to occur. Our calculations indicate that microplastics could be emitted at wind speeds lower than the characteristic threshold of background soil. Analyzing the windspeed distribution for 3 months of wind events over a bare soil surface, we showed that more than 84% of the wind events exceed the threshold velocity of microplastics of size 150 μm, while only 23% of the wind events exceed the threshold velocity of the background soil. Thus, current models for fugitive dust emissions may underestimate the microplastic emission potential of biosolid-amended soils.
more »
« less
- Award ID(s):
- 2054170
- PAR ID:
- 10537617
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Environmental Science & Technology Letters
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2328-8930
- Page Range / eLocation ID:
- 136 to 142
- Subject(s) / Keyword(s):
- Microplastics, agriculture, biosolids, aeolian transport, wind erosion, emission potential
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wind erosion and dust emissions affect regions of the world with sparse vegetation cover or affected by agricultural practices that expose the soil surface to wind action. Although several studies have investigated the impact of soil moisture, land use and land cover on soil susceptibility to wind erosion and dust emissions, the effect of surface soil salinity and sodicity on dust emissions, remains poorly understood. Salt accumulation in agricultural soils is a major concern in agroecosystems with high evaporative demand, shallow water tables or irrigated with water rich in dissolved solids. Recent studies have focused on the effect of soil salinity on soil erodibility in dry atmospheric conditions, while the effect of soil salinity and sodicity in more humid conditions still needs to be investigated. Here we use wind tunnel tests to study the effect of high atmospheric humidity on wind erodibility and particulate matter emissions under saline and sodic conditions. We find that the threshold velocity for wind erosion significantly increases with increasing soil salinity and sodicity, provided that the soil crust formed by soil salts is not disturbed. Indeed, with increasing soil salinity, the formation of a soil crust of increasing strength is observed, leading to an increase in the threshold wind velocity and a consequent decrease in particulate emissions. Interestingly, after the threshold velocity was exceeded, soil crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions in saline and sodic soils compared to their untreated (‘control’) counterparts which can be explained by salinity‐induced aggregation and sodicity‐driven clay dispersion effects. Lastly, understanding the role of atmospheric humidity under changing climate scenarios will help to modulate the wind erosion processes in saline‐sodic soils and will help mitigate better dust emissions and soil management policies in arid and semi‐arid climate zones.more » « less
-
Abstract Soil degradation is a worldwide problem, causing the declining performance of many plant species. Recently, the application of sediments dredged from aquatic waterways has received attention for their potential as an organic amendment to revive degraded agricultural soils. In Ohio, dredged sediment research has largely focused on the success of corn (Zea mays) or soybean (Glycine max) following the application of dredged sediments from the Toledo Harbor, neglecting the potential for dredged sediments from the other eight harbors and waterways to change plant performance as well as failing to quantify benefits for other commonly grown crops in the region. In a greenhouse experiment, we applied dredged sediments from the Lorain Harbor to degraded agricultural soils across a variety of application ratios and quantified changes in germination, height over the growing season, final biomass, and yield for canola (Brassica napus), tall fescue KY 31 (Festuca arundinacea), and corn to better understand the potential for dredged sediments from this location to increase performance for a variety of regionally important plant species. Overall, plants grown on agricultural soils supplemented with dredged sediments from the Lorain Harbor consistently grew taller, faster, and were larger than the 100% dredged sediment treatments. Furthermore, both corn and tall fescue grown on agricultural soil supplemented with dredged sediments had greater yield compared to their counterparts grown on unamended agricultural soil. In whole, outcomes from this research contribute to a growing body of research that support the use of dredged sediments as a soil amendment for agricultural soils.more » « less
-
Abstract Arid and semiarid ecosystems around the world are often prone to both soil salinization and accelerated soil erosion by wind. Soil salinization, the accumulation of salts in the shallow portions of the soil profile, is known for its ability to decreases soil fertility and inhibit plant growth. However, the effect of salts on soil erodibility by wind and the associated dust emissions in the early stages of soil salinization (low salinity conditions) remains poorly understood. Here we use wind tunnel tests to detect the effects of soil salinity on the threshold velocity for wind erosion and dust production in dry soils with different textures treated with salt‐enriched water at different concentrations. We find that the threshold velocity for wind erosion increases with soil salinity. We explain this finding as the result of salt‐induced (physical) aggregation and soil crust formation, and the increasing strength of surface soil crust with increasing soil salinity, depending on soil texture. Even though saline soils showed resistance to wind erosion in the absence of abraders, the salt crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions compared to non‐saline soils. Interestingly, the salinity of the emitted dust is found to be significantly higher (5–10 times more) than that of the parent soil, suggesting that soil salts are preferentially emitted, and airborne dust is enriched of salts.more » « less
-
Anthropogenic salt inputs have impacted many streams in the U.S. for over a century. Urban stream salinity is often chronically elevated and punctuated by episodic salinization events, which can last hours to days after snowstorms and the application of road salt. Here, we investigated the impacts of freshwater salinization on total dissolved nitrogen (TDN) and NO3−/NO2− concentrations and fluxes across time in urban watersheds in the Baltimore-Washington D.C. metropolitan area of the Chesapeake Bay region. Episodic salinization from road salt applications and snowmelt quickly mobilized TDN in streams likely through soil ion exchange, hydrologic flushing, and other biogeochemical processes. Previous experimental work from other studies has shown that salinization can mobilize nitrogen from sediments, but less work has investigated this phenomenon with high-frequency sensors and targeted monitoring during road salt events. We found that urban streams exhibited elevated concentrations and fluxes of TDN, NO3−/NO2−, and specific conductance that rapidly peaked during and after winter road salt events, and then rapidly declined afterwards. We observed plateaus in TDN concentrations in the ranges of the highest specific conductance values (between 1000 and 2000 μS/cm) caused by road salt events. Plateaus in TDN concentrations beyond a certain threshold of specific conductance values suggested source limitation of TDN in watersheds (at the highest ranges in chloride concentrations and ranges); salts were likely extracting nitrogen from soils and streams through ion exchange in soils and sediments, ion pairing in soils and waters, and sodium dispersion of soils to a certain threshold level. When watershed transport was compared across land use, including a forested reference watershed, there was a positive relationship between Cl− loads and NO3−/NO2− loads. This relationship occurred across all sites regardless of land use, which suggests that the mass transport of Cl− and NO3−/NO2− are likely influenced by similar factors such as soil ion exchange, ion pairing, sodium dispersion of soils, hydrologic flushing, and biogeochemical processes. Freshwater salinization has the potential to alter the magnitude and timing of total dissolved nitrogen delivery to receiving waters during winter months following road salt applications, and further work should investigate the seasonal relationships of N transport with salinization in urban watersheds.more » « less
An official website of the United States government

