skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier
Abstract. The McMurdo Dry Valleys (MDV) are home to a unique microbial ecosystem that is dependent on the availability of freshwater. This is a polar desert and freshwater originates almost entirely from surface and near-surface melt of the cold-based glaciers. Understanding the future evolution of these environments requires the simulation of the full chain of physical processes from net radiative forcing, surface energy balance, melt, runoff and transport of meltwater in stream channels from the glaciers to the terminal lakes where the microbial community resides. To establish a new framework to do this, we present the first application of WRF-Hydro/Glacier in the MDV, which as a fully distributed hydrological model has the capability to resolve the streams from the glaciers to the bare land that surround them. Given that meltwater generation in the MDV is almost entirely dependent on small changes in the energy balance of the glaciers, the aim of this study is to optimize the multi-layer snowpack scheme that is embedded in WRF-Hydro/Glacier to ensure that the feedbacks between albedo, snowfall and melt are fully resolved. To achieve this, WRF-Hydro/Glacier is implemented at a point scale using automatic weather station data on Commonwealth Glacier to physically model the onset, duration and end of melt over a 7-month period (1 August 2021 to 28 February 2022). To resolve the limited energetics controlling melt, it was necessary to (1) limit the percolation of meltwater through the ice layers in the multi-layer snowpack scheme and (2) optimize the parameters controlling the albedo of both snow and ice over the melt season based on observed spectral signatures of albedo. These modifications enabled the variability of broadband albedo over the melt season to be accurately simulated and ensured that modelled surface and near-surface temperatures, surface height change and runoff were fully resolved. By establishing a new framework that couples a detailed snowpack model to a fully distributed hydrological model, this work provides a stepping stone to model the spatial and temporal variability of melt and streamflow in the future, which will enable some of the unknown questions about the hydrological connectivity of the MDV to be answered.  more » « less
Award ID(s):
2224760
PAR ID:
10537623
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Copernicus Online Journals
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
28
Issue:
3
ISSN:
1607-7938
Page Range / eLocation ID:
459 to 478
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With a unique biogeophysical signature relative to other freshwater sources, meltwater from glaciers plays a crucial role in the hydrological and ecological regime of high latitude coastal areas. Today, as glaciers worldwide exhibit persistent negative mass balance, glacier runoff is changing in both magnitude and timing, with potential downstream impacts on infrastructure, ecosystems, and ecosystem resources. However, runoff trends may be difficult to detect in coastal systems with large precipitation variability. Here, we use the coupled energy balance and water routing model SnowModel‐HydroFlow to examine changes in timing and magnitude of runoff from the western Juneau Icefield in Southeast Alaska between 1980 and 2016. We find that under sustained glacier mass loss (−0.57 ± 0.12 m w. e. a−1), several hydrological variables related to runoff show increasing trends. This includes annual and spring glacier ice melt volumes (+10% and +16% decade−1) which, because of higher proportions of precipitation, translate to smaller increases in glacier runoff (+3% and +7% decade−1) and total watershed runoff (+1.4% and +3% decade−1). These results suggest that the western Juneau Icefield watersheds are still in an increasing glacier runoff period prior to reaching “peak water.” In terms of timing, we find that maximum glacier ice melt is occurring earlier (2.5 days decade−1), indicating a change in the source and quality of freshwater being delivered downstream in the early summer. Our findings highlight that even in maritime climates with large precipitation variability, high latitude coastal watersheds are experiencing hydrological regime change driven by ongoing glacier mass loss. 
    more » « less
  2. Abstract Glaciers of the McMurdo dry valleys (MDVs) Antarctica are the main source of streamflow in this polar desert. Because summer air temperatures hover near 0°C small changes in the energy balance strongly affect meltwater generation. Here we demonstrate that increased surface roughness, which alters the turbulent transfer of energy between the ice surface and atmosphere, yields a detectable increase in meltwater runoff. At low elevations on the glaciers, basin‐like topography became significantly rougher over 13 years between repeat lidar surveys, yielding greater melt. In contrast, the smoother ice at higher elevation exhibited no detectable change in roughness. We pose a conceptual model of the cycle of glacier surface change as a result of climate forcing whereby glacier surfaces transition from being dominated by sublimation to becoming increasingly melt‐dominated, which is reversible under prolonged cool periods. This research advances our understanding of warm season effects on polar glaciers. 
    more » « less
  3. Tamaki, Hideyuki (Ed.)
    ABSTRACT Glaciers are rapidly receding under climate change. A melting cryosphere will dramatically alter global sea levels, carbon cycling, and water resource availability. Glaciers host rich biotic communities that are dominated by microbial diversity, and this biodiversity can impact surface albedo, thereby driving a feedback loop between biodiversity and cryosphere melt. However, the microbial diversity of glacier ecosystems remains largely unknown outside of major ice sheets, particularly from a temporal perspective. Here, we characterized temporal dynamics of bacteria, eukaryotes, and algae on the Paradise Glacier, Mount Rainier, USA, over nine time points spanning the summer melt season. During our study, the glacier surface steadily darkened as seasonal snow melted and darkening agents accumulated until new snow fell in late September. From a community-wide perspective, the bacterial community remained generally constant while eukaryotes and algae exhibited temporal progression and community turnover. Patterns of individual taxonomic groups, however, were highly stochastic. We found little support for our a priori prediction that autotroph abundance would peak before heterotrophs. Notably, two different trends in snow algae emerged—an abundant early- and late-season operational taxonomic unit (OTU) with a different midsummer OTU that peaked in August. Overall, our results highlight the need for temporal sampling to clarify microbial diversity on glaciers and that caution should be exercised when interpreting results from single or few time points. IMPORTANCE Microbial diversity on mountain glaciers is an underexplored component of global biodiversity. Microbial presence and activity can also reduce the surface albedo or reflectiveness of glaciers, causing them to absorb more solar radiation and melt faster, which in turn drives more microbial activity. To date, most explorations of microbial diversity in the mountain cryosphere have only included single time points or focused on one microbial community (e.g., bacteria). Here, we performed temporal sampling over a summer melt season for the full microbial community, including bacteria, eukaryotes, and fungi, on the Paradise Glacier, Washington, USA. Over the summer, the bacterial community remained generally constant, whereas eukaryote and algal communities temporally changed through the melt season. Individual taxonomic groups, however, exhibited considerable stochasticity. Overall, our results highlight the need for temporal sampling on glaciers and that caution should be exercised when interpreting results from single or few time points. 
    more » « less
  4. Abstract The flow speed of the Greenland Ice Sheet changes dramatically in inland regions when surface meltwater drains to the bed. But ice-sheet discharge to the ocean is dominated by fast-flowing outlet glaciers, where the effect of increasing surface melt on annual discharge is unknown. Observations of a supraglacial lake drainage at Helheim Glacier, and a consequent velocity pulse propagating down-glacier, provide a natural experiment for assessing the impact of changes in injected meltwater, and allow us to interrogate the subglacial hydrological system. We find a highly efficient subglacial drainage system, such that summertime lake drainage has little net effect on ice discharge. Our results question the validity of common remote-sensing approaches for inferring subglacial conditions, knowledge of which is needed for improved projections of sea-level rise. 
    more » « less
  5. Abstract. The McMurdo Dry Valleys (MDVs) of Antarctica are a polar desertecosystem consisting of alpine glaciers, ice-covered lakes, streams, andexpanses of vegetation-free rocky soil. Because average summer temperaturesare close to 0 ∘C, theMDV ecosystem in general, and glacier melt dynamics in particular, are both closely linked to the energy balance. A slightincrease in incoming radiation or change in albedo can have large effects onthe timing and volume of meltwater. However, the seasonal evolution orspatial variability of albedo in the valleys has yet to fully characterized.In this study, we aim to understand the drivers of landscape albedo changewithin and across seasons. To do so, a box with a camera, GPS, andshortwave radiometer was hung from a helicopter that flew transects four to fivetimes a season along Taylor Valley. Measurements were repeated over threeseasons. These data were coupled with incoming radiation measured at sixmeteorological stations distributed along the valley to calculate thedistribution of albedo across individual glaciers, lakes, and soilsurfaces. We hypothesized that albedo would decrease throughout the australsummer with ablation of snow patches and increasing sediment exposure on theglacier and lake surfaces. However, small snow events (<6 mm waterequivalent) coupled with ice whitening caused spatial and temporalvariability of albedo across the entire landscape. Glaciers frequentlyfollowed a pattern of increasing albedo with increasing elevation, as well asincreasing albedo moving from east to west laterally across the ablationzone. We suggest that spatial patterns of albedo are a function of landscapemorphology trapping snow and sediment, longitudinal gradients in snowfallmagnitude, and wind-driven snow redistribution from east to west alongthe valley. We also compare our albedo measurements to the MODIS albedo productand found that overall the data have reasonable agreement. The mismatch inspatial scale between these two datasets results in variability, which isreduced after a snow event due to albedo following valley-scale gradients ofsnowfall magnitude. These findings highlight the importance of understandingthe spatial and temporal variability in albedo and the close coupling ofclimate and landscape response. This new understanding of landscape albedocan constrain landscape energy budgets, better predict meltwater generationon from MDV glaciers, and how these ecosystems will respond to changingclimate at the landscape scale. 
    more » « less