Abstract. The McMurdo Dry Valleys (MDV) are home to a unique microbial ecosystem that is dependent on the availability of freshwater. This is a polar desert and freshwater originates almost entirely from surface and near-surface melt of the cold-based glaciers. Understanding the future evolution of these environments requires the simulation of the full chain of physical processes from net radiative forcing, surface energy balance, melt, runoff and transport of meltwater in stream channels from the glaciers to the terminal lakes where the microbial community resides. To establish a new framework to do this, we present the first application of WRF-Hydro/Glacier in the MDV, which as a fully distributed hydrological model has the capability to resolve the streams from the glaciers to the bare land that surround them. Given that meltwater generation in the MDV is almost entirely dependent on small changes in the energy balance of the glaciers, the aim of this study is to optimize the multi-layer snowpack scheme that is embedded in WRF-Hydro/Glacier to ensure that the feedbacks between albedo, snowfall and melt are fully resolved. To achieve this, WRF-Hydro/Glacier is implemented at a point scale using automatic weather station data on Commonwealth Glacier to physically model the onset, duration and end of melt over a 7-month period (1 August 2021 to 28 February 2022). To resolve the limited energetics controlling melt, it was necessary to (1) limit the percolation of meltwater through the ice layers in the multi-layer snowpack scheme and (2) optimize the parameters controlling the albedo of both snow and ice over the melt season based on observed spectral signatures of albedo. These modifications enabled the variability of broadband albedo over the melt season to be accurately simulated and ensured that modelled surface and near-surface temperatures, surface height change and runoff were fully resolved. By establishing a new framework that couples a detailed snowpack model to a fully distributed hydrological model, this work provides a stepping stone to model the spatial and temporal variability of melt and streamflow in the future, which will enable some of the unknown questions about the hydrological connectivity of the MDV to be answered. 
                        more » 
                        « less   
                    
                            
                            Summer Dynamics of Microbial Diversity on a Mountain Glacier
                        
                    
    
            ABSTRACT Glaciers are rapidly receding under climate change. A melting cryosphere will dramatically alter global sea levels, carbon cycling, and water resource availability. Glaciers host rich biotic communities that are dominated by microbial diversity, and this biodiversity can impact surface albedo, thereby driving a feedback loop between biodiversity and cryosphere melt. However, the microbial diversity of glacier ecosystems remains largely unknown outside of major ice sheets, particularly from a temporal perspective. Here, we characterized temporal dynamics of bacteria, eukaryotes, and algae on the Paradise Glacier, Mount Rainier, USA, over nine time points spanning the summer melt season. During our study, the glacier surface steadily darkened as seasonal snow melted and darkening agents accumulated until new snow fell in late September. From a community-wide perspective, the bacterial community remained generally constant while eukaryotes and algae exhibited temporal progression and community turnover. Patterns of individual taxonomic groups, however, were highly stochastic. We found little support for our a priori prediction that autotroph abundance would peak before heterotrophs. Notably, two different trends in snow algae emerged—an abundant early- and late-season operational taxonomic unit (OTU) with a different midsummer OTU that peaked in August. Overall, our results highlight the need for temporal sampling to clarify microbial diversity on glaciers and that caution should be exercised when interpreting results from single or few time points. IMPORTANCE Microbial diversity on mountain glaciers is an underexplored component of global biodiversity. Microbial presence and activity can also reduce the surface albedo or reflectiveness of glaciers, causing them to absorb more solar radiation and melt faster, which in turn drives more microbial activity. To date, most explorations of microbial diversity in the mountain cryosphere have only included single time points or focused on one microbial community (e.g., bacteria). Here, we performed temporal sampling over a summer melt season for the full microbial community, including bacteria, eukaryotes, and fungi, on the Paradise Glacier, Washington, USA. Over the summer, the bacterial community remained generally constant, whereas eukaryote and algal communities temporally changed through the melt season. Individual taxonomic groups, however, exhibited considerable stochasticity. Overall, our results highlight the need for temporal sampling on glaciers and that caution should be exercised when interpreting results from single or few time points. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1904159
- PAR ID:
- 10404881
- Editor(s):
- Tamaki, Hideyuki
- Date Published:
- Journal Name:
- mSphere
- Volume:
- 7
- Issue:
- 6
- ISSN:
- 2379-5042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. The McMurdo Dry Valleys (MDVs) of Antarctica are a polar desertecosystem consisting of alpine glaciers, ice-covered lakes, streams, andexpanses of vegetation-free rocky soil. Because average summer temperaturesare close to 0 ∘C, theMDV ecosystem in general, and glacier melt dynamics in particular, are both closely linked to the energy balance. A slightincrease in incoming radiation or change in albedo can have large effects onthe timing and volume of meltwater. However, the seasonal evolution orspatial variability of albedo in the valleys has yet to fully characterized.In this study, we aim to understand the drivers of landscape albedo changewithin and across seasons. To do so, a box with a camera, GPS, andshortwave radiometer was hung from a helicopter that flew transects four to fivetimes a season along Taylor Valley. Measurements were repeated over threeseasons. These data were coupled with incoming radiation measured at sixmeteorological stations distributed along the valley to calculate thedistribution of albedo across individual glaciers, lakes, and soilsurfaces. We hypothesized that albedo would decrease throughout the australsummer with ablation of snow patches and increasing sediment exposure on theglacier and lake surfaces. However, small snow events (<6 mm waterequivalent) coupled with ice whitening caused spatial and temporalvariability of albedo across the entire landscape. Glaciers frequentlyfollowed a pattern of increasing albedo with increasing elevation, as well asincreasing albedo moving from east to west laterally across the ablationzone. We suggest that spatial patterns of albedo are a function of landscapemorphology trapping snow and sediment, longitudinal gradients in snowfallmagnitude, and wind-driven snow redistribution from east to west alongthe valley. We also compare our albedo measurements to the MODIS albedo productand found that overall the data have reasonable agreement. The mismatch inspatial scale between these two datasets results in variability, which isreduced after a snow event due to albedo following valley-scale gradients ofsnowfall magnitude. These findings highlight the importance of understandingthe spatial and temporal variability in albedo and the close coupling ofclimate and landscape response. This new understanding of landscape albedocan constrain landscape energy budgets, better predict meltwater generationon from MDV glaciers, and how these ecosystems will respond to changingclimate at the landscape scale.more » « less
- 
            With solar radiation being a primary driver of melting glacial ice and snow, glaciers and high-elevation mountain snowpacks are especially sensitive to even small changes in the concentration of light absorbing particles. Surface melt of snow and glacial ice is substantially higher if impurities such as mineral dust and organic matter are present in significant quantities. Bacteria and algae further promote darkening of the glacial surface and melting by aggregating these impurities in the form of biofilm. Like many mountain glaciers of the Alaskan region, the Juneau Icefield has seen extensive mass loss. Black carbon released by human and natural activities has become a major contributor to reducing snow and ice albedo. Microbes can affect the dynamics of black carbon on glacial surfaces, with biodegradation having profound implications on its residence time, light absorbance, and output to adjacent and downstream aquatic ecosystems. This NSF Rapid Response Research (RAPID) project funded the field work necessary for the acquisition of samples from the Gilkey Glacier, Alaska in July 2024. This dataset includes sample collection types, coordinates and stream flow data.more » « less
- 
            Abstract We study the meteorological drivers of melt at two glaciers in Taylor Valley, Antarctica, using 22 years of weather station observations and surface energy fluxes. The glaciers are located only 30 km apart, but have different local climates; Taylor Glacier is generally drier and windier than Commonwealth Glacier, which receives more snowfall due to its proximity to the coast. Commonwealth Glacier shows more inter-annual melt variability, explained by variable albedo due to summer snowfall events. A significant increase in surface melt at Commonwealth Glacier is associated with a decrease in summer minimum albedo. Inter-annual variability in melt at both glaciers is linked to degree-days above freezing during föhn events, occurring more frequently at Taylor Glacier. At Taylor Glacier melt occurs most often with positive air temperatures, but föhn conditions also favour sublimation, which cools the surface and prevents melt for the majority of the positive air temperatures. At Commonwealth Glacier, most of the melt instead occurs with sub-zero air temperatures, driven by strong solar radiative heating. Future melt at Taylor Glacier will likely be more sensitive to changes in föhn events, while Commonwealth Glacier will be impacted more by changes in near coastal weather, where moisture inputs can drive cloud cover, snowfall and change albedo.more » « less
- 
            Glaciers are important drivers of environmental heterogeneity and biological diversity across mountain landscapes. Worldwide, glaciers are receding rapidly due to climate change, with important consequences for biodiversity in mountain ecosystems. However, the effects of glacier loss on biodiversity have never been quantified across a mountainous region, primarily due to a lack of adequate data at large spatial and temporal scales. Here, we combine high-resolution biological and glacier change (ca. 1850–2015) datasets for Glacier National Park, USA, to test the prediction that glacier retreat reduces biodiversity in mountain ecosystems through the loss of uniquely adapted meltwater stream species. We identified a specialized cold-water invertebrate community restricted to the highest elevation streams primarily below glaciers, but also snowfields and groundwater springs. We show that this community and endemic species have unexpectedly persisted in cold, high-elevation sites, even in catchments that have not been glaciated in ∼170 y. Future projections suggest substantial declines in suitable habitat, but not necessarily loss of this community with the complete disappearance of glaciers. Our findings demonstrate that high-elevation streams fed by snow and other cold-water sources continue to serve as critical climate refugia for mountain biodiversity even after glaciers disappear.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    